Проектирование распределенной локальной вычислительной сети. Разработка и проектирование локальной вычислительной сети для организации имеющей два офиса и склад

Виды беспроводных сетей 13.09.2020
Виды беспроводных сетей

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Введение
    • 1.6 Выбор технологий
    • Заключение

Введение

Темой моей курсовой работы стал процесс проектирования локальной вычислительной сети. Эта тема достаточно актуальна, так как она обусловлена всемирной тенденцией объединения компьютеров в сети. Компьютерная Вычислительная сеть -- это совокупность компьютеров, соединенных линиями связи. Кабелями, сетевыми адаптерами и другими коммуникационными устройствами называются линии связи. Можно сказать, что все сетевое оборудование работает под управлением прикладного программного обеспечения.

Актуальность темы определяется тем, что компьютерные сети прочно вошли в нашу жизнь. Они применяются почти во всех сферах жизни: от обучения до управления производством, от расчетов на бирже до домашней WI-FI сети. С одной стороны, они являются частным случаем распределённых компьютерных систем, а с другой - могут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах.

Цель: Спроектировать локальную вычислительную группы компьютерных классов учебного заведения.

Объект исследования: Процесс проектирования локальной вычислительной сети.

Методы исследования которые заключаются систематизация и анализа учебной и нормативно-технической литературы, а также интернет ресурса, рекомендация производителей телекоммуникационного оборудования и современных стандартов.

Предмет исследования: Поиск и обработка знаний о предмете исследования будет вестись с помощью учебных материалов, указанных в списке литературы и ресурсов сети Интернет.

Задачи работы:

1. Теоретическое обоснование построение вычислительной локальной сети;

2. Проработка предпосылок и условий для создания вычислительной сети;

3. Создание проекта вычислительной локальной сети.

1. Теоретическое обоснование построения вычислительной локальной сети

1.1 Локальные и глобальные сети. Сети других типов классификации

Для того чтобы создать проект ЛВС необходимо прежде всего с начало в первую очередь определить чем отличается ЛВС от других типов сетей.

Локальная вычислительная сеть представляет собой систему распределенной обработки данных, охватывающую небольшую территорию (диаметром до 10 км) внутри учреждений, вузов, банков, офисов и т. д.

· PAN -- персональная сеть, предназначенная для взаимодействия различных устройств, принадлежащих одному владельцу.

· ЛВС (LAN), -- локальные сети, имеющие замкнутую инфраструктуру до выхода на поставщиков услуг. Термин "LAN" может описывать и маленькую офисную сеть, и сеть уровня большого завода. Локальные сети являются сетями закрытого типа, доступ к ним разрешён только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью.

· CAN (кампусная сеть) -- объединяет локальные сети близко расположенных зданий.

· MAN -- городские сети между учреждениями в пределах одного или нескольких городов, связывающие много локальных вычислительных сетей.

· WAN -- глобальная сеть, покрывающая большие географические регионы, включающие в себя как локальные сети, так и прочие телекоммуникационные сети и устройства.

· Термин "корпоративная сеть" также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

По способу управления

К лиент/сервер - в них выделяется один или несколько узлов (их название - серверы), выполняющих в сети управляющие или специальные обслуживающие функции, а остальные узлы (клиенты) являются терминальными, в них работают пользователи. Сети клиент/сервер различаются по характеру распределения функций между серверами, другими словами по типам серверов. При специализации серверов по определенным приложениям имеем сеть распределенных вычислений. Такие сети отличают также от централизованных систем, построенных на мэйнфреймах;

Одноранговые - сети в них все узлы равноправны; поскольку в общем случае под клиентом понимается объект (устройство или программа), запрашивающий некоторые услуги, а под сервером - объект, предоставляющий эти услуги, то каждый узел в одноранговых сетях может выполнять функции и клиента, и сервера.

По методу доступа

Ти пичная среда передачи данных в локальных вычислительных сетях - отрезок (сегмент) коаксиального кабеля. К нему через аппаратуру окончания канала данных подключаются узлы - компьютеры и возможно общее периферийное оборудование. Поскольку среда передачи данных общая, а запросы на сетевые обмены у узлов появляются асинхронно, то возникает проблема разделения общей среды между многими узлами, другими словами, проблема обеспечения доступа к сети. Доступ к сети - взаимодействие станции (узла сети) со средой передачи данных для обмена информацией с другими станциями. Управление доступом к среде - это установление последовательности, в которой станции получают доступ к среде передачи данных. Различают случайные и детерминированные методы доступа. Среди случайных методов наиболее известен метод множественного доступа с контролем несущей и обнаружением конфликтов.

1.2 Сравнительный анализ различных топологий сетей

На данный момент существуют способы объединение компьютеров. Способ описания конфигурации сети, схема расположения и соединения сетевых устройств характеризуется термином сетевая тополомгия.

Выделим наиболее распространенные сетевые топологии:

Шинная - локальная сеть, в которой связь между любыми двумя станциями устанавливается через один общий путь и данные, передаваемые любой станцией, одновременно становятся доступными для всех других станций, подключенных к этой же среде передачи данных.

Кольцевая - узлы связаны кольцевой линией передачи данных (к каждому узлу подходят только две линии); данные, проходя по кольцу, поочередно становятся доступными всем узлам сети;

Звездная - имеется центральный узел, от которого расходятся линии передачи данных к каждому из остальных узлов;

Иерархическая - каждое устройство обеспечивает непосредственное управление устройствами, находящимися ниже в иерархии.

Термин "топология", или "топология сети", характеризует физическое расположение компьютеров, кабелей и других компонентов сети.

Топология - стандартный термин, который используется профессионалами при описании основной компоновки сети. Кроме термина "топология", для описания физической компоновки используют также следующие:

Физическое расположение; компоновка;

Диаграмма;

Топология сети обуславливает ее характеристики. В частности, выбор той или иной топологии влияет:

На состав необходимого сетевого оборудования;

Характеристики сетевого оборудования;

Возможности расширения сети;

Способ управления сетью.

Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве сетей применяется кабель.

Однако просто подключить компьютер к кабелю, соединяющему другие компьютеры, не достаточно. Различные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров.

Сравнительный анализ топологий организации сетей

Сравнительный анализ проведён на основе следующих показателей:

1) Простота структурной организации. Измеряемая количеством каналов связи между узлами сети

2) Надежность. Определяется наличием узких мест, при отказе которых сеть перестает функционировать. Надежность также характеризуется наличием альтернативных путей благодаря которым при отказе отдельных каналов связь может быть установлена в обход отказавшего участка

3) Производительность сети. Определяется количеством блоков данных передаваемых по сети в единицу времени. При этом необходимо учитывать возможность снижения скорости из-за конфликтов в сети

4) Время доставки сообщений. Может измеряться не обязательно во временных единицах.

5) Стоимость топологии. Определяется как стоимостью аппаратуры, так и сложностью реализации сети.

Составим таблицу сравнения различных топологий по указанным признакам. Признаки будут оцениваться значениями от 1 до 5, причем 1 - это наилучшее значение.

Таблица 1

Сравнительный анализ топологии сетей

Простота структурной организации и стоимость - это два показателя, которые очень сильно зависят друг от друга. По количеству каналов связи наиболее простой топологий является общая шина, которая имеет только 1 канал связи. Сеть строится на основе сетевой карты. Отсутствие сложностей при добавлении новых компьютеров, также добавляет преимущества этой топологии. Таким образом, общая шина несомненно самая простая и дешевая топология. К сравнительно дешевым можно также отнести топологи звезда и дерево, что связано с малым количеством типов связей между узлами, т.е. каждый компьютер связан напрямую с центральным узлом. Далее следует топология кольцо. В ней количество каналов связи равно количеству узлов. Полносвязная топология является наиболее сложной, и дорогой, соответственно. Это делает нецелесообразным использование такой топологии при построении больших сетей. При построении глобальных сетей наибольшее распространение получила многосвязная\ячеистая топология. Она занимает промежуточное положение по этим показателям, однако альтернативы этой топологии в глобальных сетях нет, потому что такие сети не строятся с нуля, а объединяет уже существующие сети.

Надежность. По этому показателю лидером является полносвязная топология. У нее отсутствуют узкие места и имеется максимально возможное количество альтернативных путей при выходе какого-либо звена из строя. Наименее надежные топологии: общая шина, звезда и дерево. Топология кольцо занимает промежуточное положение, также как и многосвязная.

Производительность сети. Если в качестве единицы измерения производительности использовать количество пакетов, передаваемых в сети за единицу времени, то очевидно, что производительность будет тем выше, чем больше пакетов одновременно находится в сети. С увеличением числа пакетов производительность растет и при каком-то значении наступает насыщение. Насыщение обычно связано с каким-то узлом или каналом в сети, нагрузка которого приближается к 1. Поэтому при построении такой сети стараются обеспечить равную пропускную способность для всех каналов, что обеспечивает максимальную производительность для полносвязной топологии и минимальную производительность для общей шины.

Время доставки. Необходимо анализировать при условии отсутствия узких мест в сети. В этом случае время доставки напрямую связано с числом хопов, т.е. каналов связи между соседними узлами. Время доставки в 1 хоп обеспечивает полносвязная топология. Наибольшее время доставки при большом количестве узлов в сети с топологией кольцо. Наиболее сложно оценить время доставки в топологии общая шина. Это связано с тем, что шина используется всеми узами, и если для одного узла время доставки оказывается минимальным, то другие узлы ждут своей очереди, и время доставки резко увеличивается. Кроме того в топологии общей шины на время доставки оказывает влияние оказывают коллизии, т.е. столкновения пакетов.

Представленный анализ носит качественный характер и не может использоваться для количественной оценки. Решение об использовании той или иной топологии должно приниматься на основе учета всех параметров. При этом может оказаться, что более сложная топология оказывается дешевле, чем более простая.

На основе приведенного материала, было принято решение о применении топологии "звезда", так как она обладает наибольшей эффективностью из представленных.

1.3 Анализ источников стандартизация сетей. Структура стандарта IEEE 802.x

В 1980 году в институте IEEE был организован комитет 802 по стандартизации локальных сетей, в результате работы которого было принято семейство стандартов IEEE 802-х, которые содержат рекомендации по проектированию нижних уровней локальных сетей. Позже результаты работы этого комитета легли в основу комплекса международных стандартов ISO 8802-1...5. Эти стандарты были созданы на основе очень распространенных фирменных стандартов сетей Ethernet, ArcNet и Token Ring.

Стандарты семейства IEEE 802.X охватывают только два нижних уровня семи-уровневой модели OSI - физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты как для локальных, так и для глобальных сетей.

Специфика локальных сетей также нашла свое отражение в разделении канального уровня на два подуровня, которые часто называют также уровнями. Канальный уровень делится в локальных сетях на два подуровня:

Логической передачи данных (Logical Link Control, LLC);

Управления доступом к среде (Media Access Control, MAC).

Уровень MAC появился из-за существования в локальных сетях разделяемой среды передачи данных. Именно этот уровень обеспечивает корректное совместное использование общей среды, предоставляя ее в соответствии с определенным алгоритмом в распоряжение той или иной станции сети. После того как доступ к среде получен, ею может пользоваться более высокий уровень - уровень LLC, организующий передачу логических единиц данных, кадров информации, с различным уровнем качества транспортных услуг. В современных локальных сетях получили распространение несколько протоколов уровня MAC, реализующих различные алгоритмы доступа к разделяемой среде. Эти протоколы полностью определяют специфику таких технологий, как Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, l00VG-AnyLAN.

Уровень LLC отвечает за передачу кадров данных между узлами с различной степенью надежности, реализует функции интерфейса с прилегающим к нему сетевым уровнем. Именно через уровень LLC сетевой протокол запрашивает у канального уровня нужную ему транспортную операцию с нужным качеством.

Протоколы уровней MAC и LLC взаимно независимы - каждый протокол уровня MAC может применяться с любым протоколом уровня LLC, и наоборот.

Стандарты IEEE 802 имеют достаточно четкую структуру, указанную на рисунке 1.1.

Рисунок 1.1

Сегодня комитет 802 включает следующий ряд подкомитетов, в который входят как уже упомянутые, так и некоторые другие:

802.1 - Internetworking - объединение сетей;

802.2 - Logical Link Control, LLC - управление логической передачей данных;

802.3 - Ethernet с методом доступа CSMA/CD;

802.4 - Token Bus LAN - локальные сети с методом доступа Token Bus;

802.5 - Token Ring LAN - локальные сети с методом доступа Token Ring;

802.6 - Metropolitan Area Network, MAN - сети мегаполисов;

802.7 - Broadband Technical Advisory Group - техническая консультационная группа по широкополосной передаче;

802,8 - Fiber Optic Technical Advisory Group - техническая консультационная группа по волоконно-оптическим сетям;

802.9 - Integrated Voice and data Networks - интегрированные сети передачи голоса и данных;

802.10 - Network Security - сетевая безопасность;

802.11 - Wireless Networks - беспроводные сети;

802.12 - Demand Priority Access LAN, l00VG-AnyLAN - локальные сети с методом доступа по требованию с приоритетами.

На основе выполненного анализа было принято решение использовать при проектировании локальной вычислительной сети следующий подкомитет IEEE 802.3. Спецификация данного подкомитета будут рассмотрены ниже.

1.4 Исследование элементов структурированной кабельной системы (СКС)

Кабельная система является фундаментом любой сети. Ответом на высокие требования к качеству кабельной системы стали структурированные кабельные системы.

Структурированная кабельная система представляет собой набор коммуникационных элементов - кабелей, разъемов, коннекторов, кроссовых панелей и шкафов, которые удовлетворяют стандартам и позволяют создавать регулярные, легко расширяемые структуры связей.

Структурированная кабельная система состоит из трех подсистем: горизонтальной (в пределах этажа), вертикальной (между этажами) и подсистемы кампуса (в пределах одной территории с несколькими зданиями).

Для горизонтальной подсистемы характерно наличие большого количества ответвлений и перекрестных связей. Наиболее подходящий тип кабеля - неэкранированная витая пара категории 5.

Вертикальная подсистема состоит из более протяженных отрезков кабеля, количество ответвлений намного меньше, чем в горизонтальной подсистеме. Предпочтительный тип кабеля - волоконно-оптический.

Для подсистемы кампуса характерна нерегулярная структура связей с центральным зданием. Предпочтительный тип кабеля - волоконно-оптический в специальной изоляции.

Кабельная система здания строится избыточной, так как стоимость последующего расширения кабельной системы превосходит стоимость установки избыточных элементов.

Для строительства СКС почти всегда используются коммутаторы или концентраторы. В связи с этим появляется вопрос - какое устройство использовать?

При передаче данных между компьютерами пакет содержит не только передаваемые данные, но и адрес компьютера-получателя.

Концентратор игнорирует адрес, содержащийся в пакете, и пересылает данные всем компьютерам, подключенным к нему. Пропускная способность концентратора (количество бит в секунду, которые способен передавать концентратор) делится между задействованными портами, поскольку данные передаются всем одновременно. Компьютер читает адрес, и только законный получатель принимает пакет данных (остальные компьютеры его игнорируют).

Коммутатор работает более интеллектуально -- он хранит информацию о компьютерах в памяти и знает, где находится получатель. Коммутатор передает данные порту этого компьютера и обслуживает только этот порт.

Это крайне упрощенное описание принципов работы концентраторов и коммутаторов, но оно дает общее представление о процессе. Также учтите, что здесь описан очень простой коммутатор, тогда как для мощных коммутаторов, используемых в крупных сетях, существуют более совершенные технологии.

Кстати говоря, в маршрутизаторах имеются встроенные коммутаторы, а не концентраторы. .

На основе приведенной информации было принято решение о использовании коммутаторов (свичей) при постройке сети.

1.5 Выбор кабеля. Основные типы кабелей и их характеристики

Кабели категории 1 применяются там, где требования к скорости передачи минимальны. Обычно это кабель для цифровой и аналоговой передачи голоса и низкоскоростной (до 20 Кбит/с) передачи данных.

Кабели категории 2 были впервые применены фирмой IBM при построении собственной кабельной системы. Главное требование к кабелям этой категории - способность передавать сигналы со спектром до 1 МГц.

Кабели категории 3 были стандартизованы в 1991 году, когда был разработан Стандарт телекоммуникационных кабельных систем для коммерческих зданий (EIA-568), на основе которого затем был создан действующий стандарт EIA-568A. Стандарт EIA-568 определил электрические характеристики кабелей категории 3 для частот в диапазоне до 16 МГц, поддерживающих, таким образом, высокоскоростные сетевые приложения. Кабель категории 3 предназначен как для передачи данных, так и для передачи голоса.

Кабели категории 4 представляют собой несколько улучшенный вариант кабелей категории 3. Кабели категории 4 обязаны выдерживать тесты на частоте передачи сигнала 20 МГц и обеспечивать повышенную помехоустойчивость и низкие потери сигнала. Кабели категории 4 хорошо подходят для применения в системах с увеличенными расстояниями (до 135 метров) и в сетях Token Ring с пропускной способностью 16 Мбит/с. На практике используются редко.

Кабели категории 5 были специально разработаны для поддержки высокоскоростных протоколов. Поэтому их характеристики определяются в диапазоне до 100 МГц. Большинство новых высокоскоростных стандартов ориентируются на использование витой пары 5 категории. На этом кабеле работают протоколы со скоростью передачи данных 100 Мбит/с - FDDI, Fast Ethernet, l00VG-AnyLAN, а также более скоростные протоколы - АТМ на скорости 155 Мбит/с, и Gigabit Ethernet на скорости 1000 Мбит/с (вариант Gigabit Ethernet на витой паре категории 5 стал стандартом в июне 1999 г.). Кабель категории 5 пришел на замену кабелю категории 3, и сегодня все новые кабельные системы крупных зданий строятся именно на этом типе кабеля (в сочетании с волоконно-оптическим).

Наиболее важные электромагнитные характеристики кабеля категории 5 имеют следующие значения:

Полное волновое сопротивление в диапазоне частот до 100 МГц равно 100 Ом;

Величина перекрестных наводок NEXT в зависимости от частоты сигнала должна принимать значения не менее 74 дБ на частоте 150 кГц и не менее 32 дБ на частоте 100 МГц;

Затухание имеет предельные значения от 0,8 дБ (на частоте 64 кГц) до 22 дБ (на частоте 100 МГц);

Активное сопротивление не должно превышать 9,4 Ом на 100 м;

Емкость кабеля не должна превышать 5,6 нф на 100 м.

Все кабели UTP независимо от их категории выпускаются в 4-парном исполнении. Каждая из четырех пар кабеля имеет определенный цвет и шаг скрутки. Обычно две пары предназначены для передачи данных, а две - для передачи голоса.

Для соединения кабелей с оборудованием используются вилки и розетки RJ-45, представляющие 8-контактные разъемы, похожие на обычные телефонные разъемы. RJ-11.

Данная информация позволяет сделать вывод о том, что для построения локальной сети наиболее предпочтителен кабель UTP 5-й категории. .

1.6 Выбор технологий

1.6.1 Технология Ethernet. Методы доступа и форматы кадров технологии Ethernet

Рассмотрим, каким образом описанные выше общие подходы к решению наиболее важных проблем построения сетей воплощены в наиболее популярной сетевой технологии - Ethernet.

Сетевая технология - это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств (например, сетевых адаптеров, драйверов, кабелей и разъемов), достаточный для построения вычислительной сети. Эпитет "достаточный" подчеркивает то обстоятельство, что этот набор представляет собой минимальный набор средств, с помощью которых можно построить работоспособную сеть. Возможно, эту сеть можно улучшить, например, за счет выделения в ней подсетей, что сразу потребует кроме протоколов стандарта Ethernet применения протокола IP, а также специальных коммуникационных устройств - маршрутизаторов. Улучшенная сеть будет, скорее всего, более надежной и быстродействующей, но за счет надстроек над средствами технологии Ethernet, которая составила базис сети.

Термин "сетевая технология" чаще всего используется в описанном выше узком смысле, но иногда применяется и его расширенное толкование как любого набора средств и правил для построения сети, например, "технология сквозной маршрутизации", "технология создания защищенного канала", "технология IP-сетей".

Протоколы, на основе которых строится сеть определенной технологии (в узком смысле), специально разрабатывались для совместной работы, поэтому от разработчика сети не требуется дополнительных усилий по организации их взаимодействия. Иногда сетевые технологии называют базовыми технологиями, имея в виду то, что на их основе строится базис любой сети. Примерами базовых сетевых технологий могут служить наряду с Ethernet такие известные технологии локальных сетей как, Token Ring и FDDI, или же технологии территориальных сетей Х.25 и frame relay. Для получения работоспособной сети в этом случае достаточно приобрести программные и аппаратные средства, относящиеся к одной базовой технологии - сетевые адаптеры с драйверами, концентраторы, коммутаторы, кабельную систему и т.п., - и соединить их в соответствии с требованиями стандарта на данную технологию. Основной принцип, положенный в основу Ethernet, - случайный метод доступа к разделяемой среде передачи данных. В качестве такой среды может использоваться толстый или тонкий коаксиальный кабель, витая пара, оптоволокно или радиоволны (кстати, первой сетью, построенной на принципе случайного доступа к разделяемой среде, была радиосеть Aloha Гавайского университета).

В стандарте Ethernet строго зафиксирована топология электрических связей. Компьютеры подключаются к разделяемой среде в соответствии с типовой структурой "общая шина". С помощью разделяемой во времени шины любые два компьютера могут обмениваться данными. Управление доступом к линии связи осуществляется специальными контроллерами - сетевыми адаптерами Ethernet. Каждый компьютер, а более точно, каждый сетевой адаптер, имеет уникальный адрес. Передача данных происходит со скоростью 10 Мбит/с. Эта величина является пропускной способностью сети Ethernet. Изначально сеть Ethernet выглядела так (рис. 1.2)

Рисунок 1.2.

Метод доступа

Суть случайного метода доступа состоит в следующем. Компьютер в сети Ethernet может передавать данные по сети, только если сеть свободна, то есть если никакой другой компьютер в данный момент не занимается обменом. Поэтому важной частью технологии Ethernet является процедура определения доступности среды.

После того как компьютер убедился, что сеть свободна, он начинает передачу, при этом "захватывает" среду. Время монопольного использования разделяемой среды одним узлом ограничивается временем передачи одного кадра. Кадр - это единица данных, которыми обмениваются компьютеры в сети Ethernet. Кадр имеет фиксированный формат и наряду с полем данных содержит различную служебную информацию, например адрес получателя и адрес отправителя.

Сеть Ethernet устроена так, что при попадании кадра в разделяемую среду передачи данных все сетевые адаптеры одновременно начинают принимать этот кадр. Все они анализируют адрес назначения, располагающийся в одном из начальных полей кадра, и, если этот адрес совпадает с их собственным адресом, кадр помещается во внутренний буфер сетевого адаптера. Таким образом, компьютер-адресат получает предназначенные ему данные. .

Формат кадров

Существует несколько форматов Ethernet-кадра.

Первоначальный Version I (больше не применяется).

Ethernet Version 2 или Ethernet-кадр II, ещё называемый DIX-- наиболее распространена и используется по сей день. Часто используется непосредственно протоколом Интернет.

Рисунок 1. 3.Формат кадра Ethernet

Наиболее распространенный формат кадра Ethernet II

Novell -- внутренняя модификация IEEE 802.3 без LLC (Logical Link Control).

Кадр IEEE 802.2 LLC.

Кадр IEEE 802.2 LLC/SNAP.

Некоторые сетевые карты Ethernet, производимые компанией Hewlett-Packard использовали при работе кадр формата IEEE 802.12, соответствующий стандарту 100VG-AnyLAN.

В качестве дополнения Ethernet-кадр может содержать тег IEEE 802.1Q для идентификации VLAN, к которой он адресован, и IEEE 802.1p для указания приоритетности.

Разные типы кадра имеют различный формат и значение MTU.

На основе данной информации для локальной сети здания, рассматриваемой в курсовой работе, была выбрана технология Ethernet.

1.6.2 Высокоскоростные технологии компьютерных сетей: Fast Ethernet, Gigabit Ethernet, 10G Ethernet

Все отличия технологии Fast Ethernet от Ethernet сосредоточены на физическом уровне. Уровни MAC и LLC в Fast Ethernet остались абсолютно теми же, и их описывают прежние главы стандартов 802.3 и 802.2. Поэтому рассматривая технологию Fast Ethernet, мы будем изучать только несколько вариантов ее физического уровня.

Более сложная структура физического уровня технологии Fast Ethernet вызвана тем, что в ней используются три варианта кабельных систем:

Волоконно-оптический многомодовый кабель, используются два волокна; локальный вычислительный сеть кабель

Коаксиальный кабель, давший первую сеть Ethernet, в число разрешенных сред передачи данных новой технологии Fast Ethernet не попал. Это общая тенденция многих новых технологий, поскольку на небольших расстояниях витая пара категории 5 позволяет передавать данные с той же скоростью, что и коаксиальный кабель, но сеть получается более дешевой и удобной в эксплуатации. На больших расстояниях оптическое волокно обладает гораздо более широкой полосой пропускания, чем коаксиал, а стоимость сети получается ненамного выше, особенно если учесть высокие затраты на поиск и устранение неисправностей в крупной кабельной коаксиальной системе.

Ниже на рисунке наглядно показаны отличия технологии Fast Ethernet и Ethernet друг от друга.

Рисунок 1.4.

Gigabit Ethernet.

Основная идея разработчиков Gigabit Ethernet состояла в максимальном сохранении идей технологии Ethernet при достижении скорости 1000 Mb/s, сохраняя все форматы кадров Ethernet. По-прежнему существует полудплексная версия протокола, поддерживающая метод доступа CSMA/СD. Сохраняя дешевизну решения на основе разделяемой среды позволяет применять Gigabit Ethernet в небольших рабочих группах, имеющих быстрые серверы и рабочие станции. Поддерживаются все основные виды кабелей, используемых Ethernet в Fast Ethernet волоконно-оптический, витая пара категории 5, неэкранированная витая пара.

10-Gigabit Ethernet.

Новый стандарт 10-гигабитного Ethernet включает в себя семь стандартов физической среды для LAN, MAN и WAN. В настоящее время он описывается поправкой IEEE 802.3ae и должен войти в следующую ревизию стандарта IEEE 802.3.

10GBASE-CX4 -- технология 10-гигабитного Ethernet для коротких расстояний (до 15 метров), используется медный кабель CX4 и коннекторы InfiniBand.

10GBASE-SR -- технология 10-гигабитного Ethernet для коротких расстояний (до 26 или 82 метров, в зависимости от типа кабеля), используется многомодовое волокно. Он также поддерживает расстояния до 300 метров с использованием нового многомодового волокна (2000 МГц/км).

10GBASE-LX4 -- использует уплотнение по длине волны для поддержки расстояний от 240 до 300 метров по многомодовому волокну. Также поддерживает расстояния до 10 километров при использовании одномодового волокна.

10GBASE-LR и 10GBASE-ER -- эти стандарты поддерживают расстояния до 10 и 40 километров соответственно.

10GBASE-SW, 10GBASE-LW и 10GBASE-EW -- эти стандарты используют физический интерфейс, совместимый по скорости и формату данных с интерфейсом OC-192 / STM-64 SONET/SDH. Они подобны стандартам 10GBASE-SR, 10GBASE-LR и 10GBASE-ER соответственно, так как используют те же самые типы кабелей и расстояния передачи.

10GBASE-T, IEEE 802.3an-2006 -- принят в июне 2006 года после 4 лет разработки. Использует витую пару категории 6 (максимальное расстояние 55 метров) и 6а (максимальное расстояние 100 метров).

10GBASE-KR -- технология 10-гигабитного Ethernet для кросс-плат (backplane/midplane) модульных коммутаторов/маршрутизаторов и серверов (Modular/Blade).

Компания Harting заявила о создании первого в мире 10-гигабитного соединителя RJ-45, не требующего инструментов для монтажа -- HARTING RJ Industrial 10G .

1.6.3 Локальные сети на основе разделяемой среды: технология TokenRing, технология FDDI

Разделяемая среда -- способ организации работы сети, при котором сообщение от одной рабочей станции достигает всех других при помощи одного общего канала связи.

Алгоритм доступа к разделяемой среде - главный фактор, определяющих эффективность совместного использования среды конечными узлами локальной сети. Можно сказать, что алгоритм доступа формирует "облик" технологии, позволяет отличать данную технологию от других.

В технологии Ethernet применяется очень простой алгоритм доступа, позволяющий узлу сети передавать данные в те моменты времени, когда он считает, что разделяемая среда свободна. Простота алгоритма доступа определила простоту и низкую стоимость оборудования Ethernet. Негативным атрибутом алгоритма доступа технологии Ethernet являются коллизии, то есть ситуации, когда кадры, передаваемые разными станциями, сталкиваются друг с другом в общей среде. Коллизии снижают эффективность разделяемой среды и придают работе сети непредсказуемый характер.

Первоначальный вариант технологии Ethernet был рассчитан на коаксиальный кабель, который использовался всеми узлами сети в качестве общей шины. Переход на кабельные системы на витой паре и концентраторах (хабах) существенно повысил эксплуатационные характеристики сетей Ethernet.

В технологиях Token Ring и FDDI поддерживались более сложные и эффективные алгоритмы доступа к среде, основанные на передаче друг другу токена -- специального кадра, разрешающего доступ. Однако чтобы выжить в конкурентной борьбе с Ethernet, этого преимущества оказалось недостаточно.

Технология Token Ring (802.5)

Сети Token Ring, так же как и сети Ethernet, характеризует разделяемая среда передачи данных, которая в данном случае состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером или токеном (token).

Сети Token Ring работают с двумя битовыми скоростями - 4 и 16 Мбит/с. Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Технология Token Ring является более сложной технологией, чем Ethernet. Она обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры - посланный кадр всегда возвращается в станцию - отправитель.

Для контроля сети одна из станций выполняет роль так называемого активного монитора. Активный монитор выбирается во время инициализации кольца как станция с максимальным значением МАС-адреса, Если активный монитор выходит из строя, процедура инициализации кольца повторяется и выбирается новый активный монитор. Чтобы сеть могла обнаружить отказ активного монитора, последний в работоспособном состоянии каждые 3 секунды генерирует специальный кадр своего присутствия. Если этот кадр не появляется в сети более 7 секунд, то остальные станции сети начинают процедуру выборов нового активного монитора.

FDDI

Технология FDDI - оптоволоконный интерфейс распределенных данных - это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель. Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

Повысить битовую скорость передачи данных до 100 Мбит/с;

Повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;

Максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам.

В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного (Primary) кольца, этот режим называется режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным вновь образуя единое кольцо. Этот режим работы сети называется Wrap, то есть "свертывание" или "сворачивание" колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часовой стрелки), а по вторичному - в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями. .

1.7 Анализ спецификаций физической среды Fast Ethernet

Спецификации физической среды стандарта 802.3z

В стандарте 802.3z определены следующие типы физической среды:

Одномодовый волоконно-оптический кабель;

Многомодовый волоконно-оптический кабель 62,5/125;

Многомодовый волоконно-оптический кабель 50/125;

Двойной коаксиал с волновым сопротивлением 75 Ом.

Многомодовый кабель

Для передачи данных по традиционному для компьютерных сетей многомодовому волоконно-оптическому кабелю стандарт определяет применение излучателей, работающих на двух длинах волн: 1300 и 850 нм. Применение светодиодов с длиной волны 850 нм объясняется тем, что они намного дешевле, чем светодиоды, работающие на волне 1300 нм, хотя при этом максимальная длина кабеля уменьшается, так как затухание многомодового оптоволокна на волне 850 м более чем в два раза выше, чем на волне 1300 нм. Однако возможность удешевления чрезвычайно важна для такой в целом дорогой технологии, как Gigabit Ethernet.

Для многомодового оптоволокна стандарт 802.3z определил спецификации l000Base-SX и l000Base-LX.

В первом случае используется длина волны 850 нм (S означает Short Wavelength, короткая волна), а во втором - 1300 нм (L - от Long Wavelength, длинная волна).

Для спецификации l000Base-SX предельная длина оптоволоконного сегмента для кабеля 62,5/125 оставляет 220 м, а для кабеля 50/125 - 500 м. Очевидно, что эти максимальные значения могут достигаться только для полнодуплексной передачи данных, так как время двойного оборота сигнала на двух отрезках 220 м равно 4400 bt, что превосходит предел 4095 bt даже без учета повторителя и сетевых адаптеров. Для полудуплексной передачи максимальные значения сегментов оптоволоконного кабеля всегда должны быть меньше 100 м. Приведенные расстояния в 220 и 500 м рассчитаны для худшего по стандарту случая полосы пропускания многомодового кабеля, находящегося в пределах от 160 до 500 МГц/км. Реальные кабели обычно обладают значительно лучшими характеристиками, находящимися между 600 и 1000 МГц/км. В этом случае можно увеличить длину кабеля до примерно 800 м.

Одномодовый кабель

Для спецификации l000Base-LX в качестве источника излучения всегда применяется полупроводниковый лазер с длиной волны 1300 нм.

Основная область применения стандарта l000Base-LX - это одномодовое оптоволокно. Максимальная длина кабеля для одномодового волокна равна 5000 м.

Спецификация l000Base-LX может работать и на многомодовом кабеле. В этом случае предельное расстояние получается небольшим - 550 м. Это связано с особенностями распространения когерентного света в широком канале многомодового кабеля. Для присоединения лазерного трансивера к многомодовому кабелю необходимо использовать специальный адаптер. .

2. Создание проекта вычислительной локальной сети

При создании локальной вычислительной сети предполагается, что:

1. Трафик каждого класса изолирован от других.

2. Имеется три компьютерных класса в первом: пять компьютеров; во втором - одиннадцать компьютеров; в третьем - три компьютера.

3. Удалённость от места подключения составляет: 1-87 метров; 2-74 метра; 3-74 метра.

4. Сеть является одноранговой со скоростью 100 мб/с, без выхода к интернету.

Стоимость реализации проекта

Таблица 2

Затраты на приобретение сетевого оборудования

Оборудование

Характеристики

Количество

Сетевая карта

COM-3CSOHO100Tx Office Connect Fast Ethernet PCI 10\100 Base-TX

Коммутатор

COM-3C16471 SS 3 Baseline 2024 24*10\100TX

Коннектор

Антивирус

Операционная система

Таблица 3

Конфигурация компьютеров рабочей группы

Тип компьютера

Рабочая станция

Материнская плата

FM2 AMD A75 MSI FM2-A75MA-P33

Процессор

AMD Athlon II X2 250

Видеоадаптер

Встроен в МП

Сетевая карта

10/100/1000Mbps PCI Adapter, 32 bit, WOL, Jumbo, Retail

Блок питания

430 Watt ATX Power Supply

Жесткий диск

HDD Seagate 80Gb , 7200rpm, SATA-II, 8mb cache

INWIN C602 Black/Silver Middle ATX 430W (20+4pin, 12cm fan)

Клавиатура

Sven 330, Silver

A4-Tech MOP-59, red Optical, Mini, USB+PS/2, Roll

Итого:18550*19=352450

Общая стоимость проекта ЛВС без учета затрат на выполнения монтажных работ составило 548777 рублей.

Заключение

В ходе выполнения курсовой работы получены практические и теоретические навыки проектирование вычислительной локальной сети. Во время выполнения курсовой работы создана локальная сеть компьютерных классов учебного заведения.

Исследованы рекомендации производителей телекоммуникационного оборудования, основы стандартов, определены требования к создаваемой системе и, как результат, разработан проект локальной вычислительной сети (ЛВС) условного предприятия.

В курсовой работе представлены необходимые расчеты, рисунки и схемы, спецификация оборудования и материалов, необходимых для построения ЛВС.

Стоимость оборудования и программного обеспечения для сети в общей сложности составила 196327 рублей, а стоимость аппаратного обеспечения компьютеров составила 352450 рублей.

Список источников и литературы

1. В.Г. Олифер. Н.А. Олифер Компьютерные сети, принципы, технологии, протоколы 4-е издание 2010. - глава 2 стр. 55,3 стр. 103,5 стр. 139.

2. Пескова С.А., Кузин А.В., Волков А.Н. Сети и телекоммуникации (3-е изд.) 2008 стр. 232

4. Интернет - ресурс Lulu.ts6.ru. Режим доступа http.// 1.20.htm

5. Таненбаум Э., Уэзеролл Д. Компьютерные сети. 5-е издание 2012

6. Таненбаум Э. Компьютерные сети. Принципы, технологии, протоколы. / Э. Таненбаум. - СПб.: Питер, 2007.

7. Максимов Н.В. Компьютерные сети: Учебное пособие [Текст] / Н.В. Максимов, И.И. Попов - М.: ФОРУМ: ИНФРА-М, 2005. - стр. 109-111

8. Компьютерные сети. Учебный курс [Текст] / Microsoft Corporation. Пер. с анг. - М.: "Русская редакция" ТОО "Channel Trading Ltd.", 1998. -стр. 258.

9. Крейг Закер Компьютерные сети БХВ-Петербург, 2001 стр. 7, 253, 234

10. Кэти Айвенс Компьютерные сети Питер 2006 стр. 29.

11. www.ieeer8.org

Размещено на Allbest.ru

Подобные документы

    Понятие компьютерных сетей, их виды и назначение. Разработка локальной вычислительной сети технологии Gigabit Ethernet, построение блок-схемы ее конфигурации. Выбор и обоснование типа кабельной системы и сетевого оборудования, описание протоколов обмена.

    курсовая работа , добавлен 15.07.2012

    Особенности локальной вычислительной сети и информационной безопасности организации. Способы предохранения, выбор средств реализации политики использования и системы контроля содержимого электронной почты. Проектирование защищенной локальной сети.

    дипломная работа , добавлен 01.07.2011

    Обзор существующих принципов построения локальных вычислительных сетей. Структурированные кабельные системы (СКС), коммутационное оборудование. Проект локальной вычислительной сети: технические требования, программное обеспечение, пропускная способность.

    дипломная работа , добавлен 25.02.2011

    Аналитический обзор технологий локальных вычислительных сетей и их топологий. Описание кабельных подсистем для сетевых решений и их спецификаций. Расчет локальной вычислительной системы на соответствие требованиям стандарта для выбранной технологии.

    дипломная работа , добавлен 28.05.2013

    Особенности проектирования и модернизация корпоративной локальной вычислительной сети и способы повышения её работоспособности. Физическая структура сети и сетевое оборудование. Построение сети ГУ "Управление Пенсионного фонда РФ по г. Лабытнанги ЯНАО".

    дипломная работа , добавлен 11.11.2014

    Основные возможности локальных вычислительных сетей. Потребности в интернете. Анализ существующих технологий ЛВС. Логическое проектирование ЛВС. Выбор оборудования и сетевого ПО. Расчёт затрат на создание сети. Работоспособность и безопасность сети.

    курсовая работа , добавлен 01.03.2011

    Построение информационной системы для автоматизации документооборота. Основные параметры будущей локальной вычислительной сети. Схема расположения рабочих станций при построении. Протокол сетевого уровня. Интеграция с глобальной вычислительной сетью.

    курсовая работа , добавлен 03.06.2013

    Проектирование локальной вычислительной сети, предназначенной для взаимодействия между сотрудниками банка и обмена информацией. Рассмотрение ее технических параметров и показателей, программного обеспечения. Используемое коммутационное оборудование.

    курсовая работа , добавлен 30.01.2011

    Назначение проектируемой локальной вычислительной сети (ЛВС). Количество абонентов проектируемой ЛВС в задействованных зданиях. Перечень оборудования, связанного с прокладкой кабелей. Длина соединительных линий и сегментов для подключения абонентов.

    реферат , добавлен 16.09.2010

    Назначение, функции и основные требования к комплексу технических и программных средств локальной вычислительной сети. Разработка трехуровневой структуры сети для организации. Выбор оборудования и программного обеспечения. Проектирование службы каталогов.

Крупные компании имеют в обороте большой объем данных разного характера:

  • текстовые файлы;
  • графические;
  • изображения;
  • таблицы;
  • схемы.

Для руководства важно, чтобы вся информация имела удобный формат, легко конвертировалась и передавалась на любом носителе в нужные руки. Но бумажные документы давно начали сменяться оцифрованными, так как компьютер может содержать множество данных, с которыми намного удобнее работать с помощью автоматизации процессов. Также этому способствует перемещение сведений, отчетов и договоров партнерам или проверяющим компаниям без длительных переездов.

Так появилась необходимость повсеместного снабжения отделов фирм электронно-вычислительными устройствами. Вместе с этим встал вопрос о соединении этих приборов в единый комплекс для защиты, сохранности и удобства перемещения файлов.

В этой статье мы расскажем, как облегчить проектирование локальной вычислительной (компьютерной) сети на предприятии.

Что такое ЛВС, ее функции

Это связующее подключение ряда компьютеров в одно замкнутое пространство. Часто такой метод используется в крупных компаниях, на производстве. Также можно самостоятельно создать небольшую связь из 2 – 3 приборов даже в домашних условиях. Чем больше включений в структуру, тем она становится сложнее.

Виды составления сетей

Бывает два типа подключения, они различаются по сложности и наличию руководящего, центрального звена:

  • Равноправные.
  • Многоуровневые.

Равнозначные, они же одноранговые, характеризуются схожестью по техническим характеристикам. На них идет одинаковое распределение функций – каждый пользователь может получить доступ во все общие документы, совершить одинаковые операции. Такая схема легка в управлении, для ее создания не требуется множественных усилий. Минусом является ее ограниченность – не более 10 членов может вступить в этот круг, в ином случае нарушается общая эффективность работы, скорость.

Серверное проектирование локальной сети компании более трудоемкое, однако, у такой системы выше уровень защиты информации, а также есть четкое распределение обязанностей внутри паутины. Самый лучший по техническим характеристикам (мощный, надежный, с большей оперативной памятью) компьютер назначается сервером. Это центр всей ЛВС, здесь хранятся все данные, с этой же точки можно открывать или прекращать доступ к документам другим пользователям.

Функции компьютерных сетей

Основные свойства, которые нужно учесть при составлении проекта:

  • Возможность подключения дополнительных устройств. Первоначально в сетке может находиться несколько машин, с расширением фирмы может понадобится дополнительное включение. При расчете мощности на это стоит обратить внимание, иначе понадобится делать перепланировку и докупать новые расходные материалы повышенной прочности.
  • Адаптация под разные технологии. Необходимо обеспечить гибкость системы и ее приспособленность к разным сетевым кабелям и разным ПО.
  • Наличие резервных линий. Во-первых, это относится к точкам выхода рядовых компьютеров. При сбое должна быть возможность подключить другой шнур. Во-вторых, нужно обеспечить бесперебойность работы сервера при многоуровневом подключении. Это можно сделать, обеспечив автоматический переход на второй концентратор.
  • Надежность. Оснащение бесперебойниками, резервами автономной энергии, чтобы минимизировать возможность перебоя связи.
  • Защита от посторонних влияний и взлома. Хранящиеся данных можно защищать не просто паролем, а целой связкой приспособлений: концентратор, коммутатор, маршрутизатор и сервер удаленного доступа.
  • Автоматизированное и ручное управление. Важно установить программу, которая будет анализировать состояние сетки в каждый момент времени и оповещать о неисправностях для быстрого их устранения. Пример такого софта – RMON. При этом можно использовать и личный мониторинг через интернет-серверы.

Составление технических требований для проектирования и расчета локальной сети (ЛВС) на предприятии

Из свойств выходят условия, которые нужно учитывать при составлении проекта. Весь процесс конструирования начинается с составления технического задания (ТЗ). Оно содержит:

  • Нормы по безопасности сведений.
  • Обеспечение всем подключенным компьютерам доступа к информации.
  • Параметры по производительности: время реакции от запроса пользователя до открытия нужной страницы, пропускная способность, то есть объем данных в работе и задержка передачи.
  • Условия надежности, то есть готовность длительной, даже постоянной работы без перебоев.
  • Замену комплектующий – расширение сетки, дополнительные включения или монтаж аппаратуры другой мощности.
  • Поддержку разных видов трафика: текст, графика, мультимедийный контент.
  • Обеспечение централизованного и дистанционного управления.
  • Интеграцию различных систем и программных пакетов.

Когда ТЗ составлено с соблюдением потребностей пользователей, выбирается вид включенности всех точек в одну сеть.

Основные топологии ЛВС

Это способы физического соединения устройств. Самые частотные представлены тремя фигурами:

  • шина;
  • кольцо;
  • звезда.

Шинная (линейная)

При сборке используется один ведущей кабель, от него уже отходят провода к пользовательским компьютерам. Основной шнур напрямую подключен к серверу,который хранит информацию. В нем же происходит отбор и фильтрация данных, предоставление или ограничение доступов.


Преимущества:

  • Отключение или проблемы с одним элементом не нарушают действия остальной сетки.
  • Проектирование локальной сети организации довольно простое.
  • Относительно низкая стоимость монтажа и расходных материалов.

Недостатки:

  • Сбой или повреждение несущего кабеля прекращает работу всей системы.
  • Небольшой участок может быть подключен таким образом.
  • Быстродействие может от этого страдать, тем более если связь проходит между более чем 10 устройствами.

«Кольцо» (кольцевая)

Все пользовательские компьютеры соединены последовательно – от одного прибора к другому. Так часто делают в случае одноранговых ЛВС. В целом эта технология применяется все реже.


Преимущества:

  • Нет расходов на концентратор, маршрутизатор и прочее сетевое оборудование.
  • Передавать информацию могут сразу несколько пользователей.

Недостатки:

  • Скорость передачи во всей сетке зависит от мощности самого медленного процессора.
  • При неполадках в кабеле или при отсутствии подключения любого элемента прекращается общая работа.
  • Настраивать такую систему достаточно сложно.
  • При подключении дополнительного рабочего места необходимо прерывать общую деятельность.

«Звезда»

Это параллельное включение устройств в сеть к общему источнику – серверу. Как цент чаще всего применяется хаб или концентратор. Все данные передаются через него. Таким способом может осуществляться работа не только компьютеров, но и принтеров, факсов и прочего оборудования. На современных предприятиях это самый частотный применяемый метод организации деятельности.


Преимущества:

  • Легко выполнить подключение еще одного места.
  • Производительность не зависит от быстродействия отдельных элементов, поэтому остается на стабильном высоком уровне.
  • Просто найти поломку.

Недостатки:

  • Неисправность центрального прибора прекращает деятельность всех пользователей.
  • Количество подключений обусловлено числом портов серверного устройства.
  • На сетку расходуется много кабеля.
  • Дороговизна оборудования.

Этапы программного проектирования ЛВС

Это многоступенчатый процесс, который требует компетентного участия многих специалистов, так как следует предварительно рассчитать необходимую пропускную способность кабелей, учесть конфигурацию помещений, установить и настроить технику.

Планирование помещений организации

Следует расположить кабинеты работников и начальства в соответствии с выбранной топологией. Если для вас подходит форма звезды, то стоит поместить основную технику в ту комнату, что является основной и располагается в центре. Это же может быть офис руководства. В случае шинного распределения, сервис может находиться в самом удаленном по коридору помещении.

Построение схемы локальной сети


Чертеж можно сделать в специализированных программах автоматизированного проектирования. Идеально подходят продукты компании «ЗВСОФТ» – в них содержатся все базовые элементы, которые потребуются при построении.

Сетка должна учитывать:

  • максимальное напряжение;
  • последовательность вхождений;
  • возможные перебои;
  • экономичность установки;
  • удобная подача электроэнергии.

Характеристики ЛВС необходимо подбирать в соответствии с планом помещений организации и используемым оборудованием.

Параметры компьютеров и сетевых устройств

При выборе и покупке элементов сетки важно учитывать следующие факторы:

  • Совместимость с разными программами и новыми технологиями.
  • Скорость передачи данных и быстродействие аппаратов.
  • Количество и качество кабелей зависит от выбранной топологии.
  • Метод управления обменов в сети.
  • Защищенность от помех и сбоев обмоткой проводов.
  • Стоимость и мощность сетевых адаптеров, трансиверов, репитеров, концентраторов, коммутаторов.

Принципы проектирования ЛВС с помощью компьютерных программ

При составлении проекта важно учесть большое количество нюансов. В этом поможет программное обеспечение от ZWSOFT. Компания занимается разработкой и продажей многофункциональных софтов для автоматизации работы инженеров-проектировщиков. Базовый САПР – является аналогом популярного, но дорогого пакта от Autodesk – AutoCAD, но превосходит его по легкости и удобству лицензирования, а также по более лояльной ценовой политике.


Преимущества программы:

  • Интуитивно понятный, удобный интерфейс в черном цвете.
  • Широкий выбор инструментов.
  • Работа в двухмерном и трехмерном пространстве.
  • 3D-визуализация.
  • Интеграция с файлами большинства популярных расширений.
  • Организация элементов ЛВС в виде блоков.
  • Подсчет длин кабельных линий.
  • Наглядное расположение элементов и узлов.
  • Одновременная работа с графикой и текстовыми данными.
  • Возможность установки дополнительных приложений.

Для ZWCAD – модуль, который расширяет функции базового САПРа в сфере проектирования мультимедийных схем. Все чертежи выполняются с автоматизированным расчетом кабелей локальной вычислительной сети и их маркировкой.

Преимущества:

  • автоматизация подбора коммутационных систем;
  • широкая библиотека элементов;
  • параллельное заполнение кабельного журнала;
  • автоматическое создание спецификаций;
  • добавление оборудования в библиотеку;
  • одновременная работа нескольких пользователей с базой данных;
  • схематичные отметки расположения устройств и предметов мебели.

Поможет сделать проект в объемном виде, создать его в 3D. Интеллектуальные инструменты позволяют быстро проложить трассы ЛВС до точек подключения, наглядно представить места прохождения кабелей, организовать пересечения линий, выполнить разрезы подключаемого оборудования и технологической мебели (в том числе в динамическом режиме). С помощью редактора компонентов можно создать библиотеку как шкафов, коммутационных аппаратов, кабелей, зажимов и проч., а также присвоить им характеристики, на основе которых в дальнейшем можно составить спецификации и калькуляции. Таким образом, функции этого софта помогут завершить генплан помещений организации с трассировкой всех линий ЛВС.

Создавайте проект локальной вычислительной сети в своем предприятии вместе с программами от «ЗВСОФТ».

Объектом проектирования является локальная вычислительная сеть организации. Данная сеть должна обеспечивать транспортировку информации в рамках организации и обеспечивать возможность взаимодействия с глобальной сетью Internet. Организация, для которой проектируется локальная сеть, является предприятие, основным видом деятельности которого является производство качественной мебели.

Топология сети и сетевое оборудование

Топология сети

При построении ЛВС организации будем использовать древовидную структуру на основе топологии звезда. Это одна из наиболее распространенных топологий, поскольку проста в обслуживании.

Достоинства топологии:

  • · выход из строя одной рабочей станции не отражается на работе всей сети в целом;
  • · хорошая масштабируемость сети;
  • · лёгкий поиск неисправностей и обрывов в сети;
  • · высокая производительность сети (при условии правильного проектирования);
  • · гибкие возможности администрирования.

Недостатки топологии:

  • · выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;
  • · для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;
  • · конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

Эта топология выбрана в связи с тем, что является наиболее быстродействующей. С точки зрения надежности она не является наилучшим решением, так как выход их строя центрального узла приводит к остановке всей сети, но в то же время проще найти неисправность.

Абоненты каждого сегмента сети будут подключены к соответствующему коммутатору (Switch). А связывать в единую сеть эти сегменты будет управляемый коммутатор - центральный элемент сети.

Необходимо следующее сетевое оборудование:

  • 1. Сетевые коммутаторы или свитчи (Switch) - 8 шт. -- устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента.
  • 2. Серверы (server) - 1 шт. -- аппаратное обеспечение, выделенное и/или специализированное для выполнения на нем сервисного программного обеспечения без непосредственного участия человека.
  • 3. Принтеры (в т.ч. многофункциональные устройства) (Printer) - 5 шт. - устройство печати цифровой информации на твёрдый носитель, обычно на бумагу. Относится к терминальным устройствам компьютера.
  • 4. DVB PC карта 1 шт. - это компьютерная плата, которая предназначена для того, чтобы принимать сигнал со спутника, а затем его расшифровывать.
  • 5. Спутниковая антенна - 1 шт. - это важнейший компонент спутникового интернета и спутникового ТВ, от нее будет зависеть стабильность интернет соединения, и качество и количество спутниковых телеканалов.
  • 6. Конвертер - 1шт. - программа с помощью, которой можно преобразовать файлы из одного формата в другой.

Среда передачи:

Среда передачи - это физическая среда, по которой возможно распространение информационных сигналов в виде электрических, световых и т.п. импульсов.

Для объединения ПК в единую ЛВС понадобится кабель типа UTP5e "витая пара" (twisted pair), является одним из наиболее распространенных типов кабеля в настоящее время. Он состоит из нескольких пар медных проводов, покрытых пластиковой оболочкой. Провода, составляющие каждую пару, закручены вокруг друг друга, что обеспечивает защиту от взаимных наводок. Кабели данного типа делятся на два класса -- "экранированная витая пара" ("Shielded twisted pair") и "неэкранированная витая пара" ("Unshielded twisted pair"). Отличие этих классов состоит в том, что экранированная витая пара является более защищенной от внешней электромагнитной интерференции, благодаря наличию дополнительного экрана из медной сетки и/или алюминиевой фольги, окружающего провода кабеля. Сети на основе "витой пары" в зависимости от категории кабеля обеспечивают передачу со скоростью от 10 Мбит/с - 1 Гбит/с. Длина сегмента кабеля не может превышать 100 м (до 100 Мбит/с).

Таблица 1. Количество оборудования в сети

Оборудование

Количество

Коммутаторы

Коммутатор

D-Link Switch 10port (8UTP 10/100/1000Mbps + 2Combo 1000Base-T/SFP)

Коммутатор

D-Link Switch 16 port (16UTP 10/100Mbps)

(swich1,2,3,4,5,6,7)

Сервер sS7000B/pro2U (SX20H2Mi): Xeon E5-2650/ 16 Гб/ 2 x 1 Тб SATA RAID

ПК (2 комплектации)

Epson AcuLaser M2400DN (A4, 35 стр/мин, 1200dpi, USB2.0/LPT, сетевой, двусторонняя печать)

Спутниковая DVB карта

TeVii S 470 PCI-E (DVB-S2)

Спутниковая антенна

LANS-7.5 Антенна сетчатая прямофокусная параболическая с азимутальной фиксированной подвеской AZ/EL 2.30м F/D=0.375

Конвертер

MultiCo < EC-202C20-BB> 10 / 100Base-TX to 100Base-FX конвертер (1UTP, 1SC)

Расчет кабельной системы:

Для расчета стоимости кабелей примем, что среднее расстояние между компьютерами в отделе и соответствующим коммутатором равно 10 метрам, тогда понадобится примерно 850 м кабеля UTP 5e.

Для покрытия расстояния от коммутаторов до центрального управляемого коммутатора (+ подсоединить руководителя) понадобится 350 м кабеля UTP 5е. сетевой локальный кабельный интернет

Увеличим расходы на кабель UTP 5e на 10% (для отходов и брака при монтаже) и получим примерно 1350 м.

Всего понадобится 100 отрезков витой пары, для которой потребуется 200 коннекторов RJ-45. С учетом брака - 220.

2.1. Определение объекта проектирования

Объектом проектирования является ЛВС организации занимающейся разработкой программного обеспечения ОАО «Easy-PO». Организация располагается в здании бизнес центра и занимает один этаж.

2.2. Цели использования сети

Предполагается использование ЛВС, в следующих целях:

Совместное использование элементов сети (суперкомпьютеры, сетевые принтеры и др.);

Возможность быстрого доступа к необходимой информации;

Надежное хранение и резервирование данных;

Защита информации;

Использование ресурсов современных технологий (доступ в Интернет, системы электронного документооборота и прочие).

2.3. Характеристики сети

Необходимые характеристики сети:

Доступ в Интернет;

Пропускная способность >= 100 Мбит/с;

Высокая производительность сервера;

Высокая отказоустойчивость

2.4. Определение размера и структуры сети

Выбрана топология сети «звезда». Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте сети RelCom. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.

Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает. Кабельное соединение довольно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически расположен не в центре топологии.

При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействующей из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями. Частота запросов передачи информации от одной станции к другой невысокая по сравнению с достигаемой в других топологиях.

Производительность вычислительной сети в первую очередь зависит от мощности центрального файлового сервера. Он может быть узким местом вычислительной сети. В случае выхода из строя центрального узла нарушается работа всей сети. Центральный узел управления – файловый сервер реализует оптимальный механизм защиты против несанкционированного доступа к информации. Вся вычислительная сеть может управляться из ее центра.

ЛВС должна соответствовать следующим требованиям:

    ЛВС должна быть эффективной (минимальные затраты и высокое качество работы);

    Открытость сети. ЛВС соответствует этому критерию, если присутствует возможность, не меняя технические и программные параметры сети, подключать дополнительное оборудование;

    Гибкость сети. Если при неисправностях того или иного компьютера или прочего оборудования, сеть продолжает функционировать – ЛВС соответствует этому требованию.

Определение размера :

Организация занимает этаж бизнес центра, произведём планирование необходимого оборудования, места размещения рабочих мест сотрудников.

Структура сети будет определена этой планировкой

Лабораторная работа №2.

Цель работы: овладение навыками работы в Microsoft Office Visio, планирование и проектирование компьютерной сети.

Процесс построения (проектирования) сети представляет собой упрощенное моделирование не наступившей действительности и включает в себя следующие основные этапы:

1. Анализ задач, для решения которых создается сеть, а также определение объема финансирования проекта.

2. Проектирование физической структуры – этап, на котором анализируются начальные условия и создается детальный проект физической организации сети.

3. Проектирование инфраструктуры – этап, на котором определяются протоколы взаимодействия, используемые службы, политика безопасности и т.п. — т.е. логическая организация сети.

4. Развертывание – этап, связанный с прокладкой линий связи, установкой и настройкой оборудования.

Этап анализа является одним из важнейших, поскольку определяет все остальные решаемые задачи: как физическую структуру сети, так и логическую. Именно на данном этапе выступает основное различие компьютерных сетей.

На этапе проектирования решаются следующие задачи:

1. На основе определенных целевых требований к сети определяется необходимый состав оборудования и, прежде всего, компьютеров: количество, характеристики и т.д.

2. Определяется физическое расположение рабочих мест и определяются этажи и аудитории, которые будут охватываться сетью. При решении этой задачи должна учитываться принципиальная возможность прокладки линий связи к рабочим местам/помещениям.

3. Исходя из решаемых задач, стоимости и расположения, определяется тип физических линий связи, соединяющих рабочие места, состав и расположение коммуникационного оборудования (например, концентраторов).

4. Определяется способ подключения к Интернету: выбирается провайдер – организация, обеспечивающая подключение организации к сети Интернет. При выборе провайдера учитываются факторы: характеристики возможных физических соединений с провайдером, требования к оборудованию и необходимое дополнительное оборудование, начальная стоимость подключения, стоимость эксплуатации подключения, технологические ограничения подключения (невозможность использования некоторых служб).

5. Исходя из технических требований, определяется узел проектируемой сети, который будет являться шлюзом для подключения к Интернету и определяется место его расположения. При этом учитывается удобство физического соединения шлюза с проектируемой сетью и удобство подведения физических линий для подключения к Интернету.

Общий алгоритм, описывающий процесс построения сети:

1. Определение исходных данных.

– определение целей использования сети;

– определение требований к сети;

– характеристики используемого оборудования (компьютеры, сетевое оборудование, принтеры, модемы и др.);

– характеристика сетевого ПО (операционные системы, серверное ПО, антивирусное ПО);

– примерная схема здания в котором планируется строить сеть.

2. Проектирование сети.

– способ сегментирования и объединения сегментов (определение необходимых сегментов оборудования для их формирования);

– выбор типа кабеля (как правило выбирается неэкранированная витая пара);

– определение активных устройств (модемы, маршрутизаторы и т.п.);

– выбор программного обеспечения (серверные и клиентские ОС, серверное программное обеспечение и т.п.);

– разработка схемы сети (указываются узлы сети и длины соединительных кабелей).

3. Определение стоимости.

– анализ основных направлений затрат;

– составление примерной сметы затрат.

4. Примерный план проведения работ.

5. Развертывание сети.

При создании новой сети желательно учитывать следующие факторы:

– требуемый размер сети (в настоящее время, в ближайшем будущем и по прогнозу на перспективу);

– структура, иерархия и основные части сети (по подразделениям предприятия, а также по комнатам, этажам и зданиям предприятия); основные направления и интенсивность информационных потоков в сети (в настоящее время, в ближайшем будущем и в дальней перспективе); характер передаваемой по сети информации;

технические характеристики оборудования (компьютеров, адаптеров, кабелей, репитеров, концентраторов, коммутаторов);

– возможности прокладки кабельной системы в помещениях и между ними, а также меры обеспечения целостности кабеля;

– обслуживание сети и контроль ее безотказности и безопасности;

– требования к программным средствам по допустимому размеру сети, скорости, гибкости, разграничению прав доступа, стоимости, по возможностям контроля обмена информацией и т.д. (например, если предполагается использование одного ресурса многими пользователями, то следует использовать серверную ОС);

– необходимость подключения к другим сетям (например, глобальным);

– имеющиеся компьютеры и их программное обеспечение, а также периферийные устройства (принтеры, сканеры и т.д.).

При выборе размера (под размером сети в данном случае понимается как количество объединяемых в сеть компьютеров, так и расстояния между ними) и структуры сети необходимо учитывать:

– количество компьютеров (следует оставлять возможность для дальнейшего роста количества компьютеров в сети);

– требуемую длину линий связи сети (например, если расстояния очень большие, может понадобиться использование дорогого оборудования).

– способы объединения частей сети (для объединения частей сети могут использоваться репитеры, репитерные концентраторы, коммутаторы, мосты и маршрутизаторы, причем в ряде случаев стоимость этого объединительного оборудования может даже превысить стоимость компьютеров, сетевых адаптеров и кабеля;

Возможность масштабирования (например, лучше приобретать коммутаторы или маршрутизаторы с количеством портов, несколько большим, чем требуется в настоящий момент).

Пример. Пусть небольшое предприятие занимает три этажа, на каждом по пять комнат, и включает в себя три подразделения, по три группы. В этом случае можно построить сеть таким образом (рис. 1):

Рабочие группы занимают по 1–3 комнаты, их компьютеры объединены между собой репитерными концентраторами. Концентратор может использоваться один на комнату, один на группу или один на весь этаж. Концентратор целесообразно расположить в помещении, в которое имеет доступ минимальное количество сотрудников.

Подразделения занимают отдельный этаж. Все три сети рабочих групп каждого подразделения объединяются коммутатором, а для связи с сетями других подразделений используется маршрутизатор. Коммутатор вместе с одним из концентраторов лучше поместить в отдельной комнате.

Общая сеть предприятия включает три сегмента сетей подразделений, объединенных маршрутизатором. Этот же маршрутизатор может использоваться для подключения к глобальной сети.

Серверы рабочих групп располагаются в комнатах рабочих групп, серверы подразделений – на этажах подразделений.

Рис. 1. Структура сети предприятия (С – серверы рабочих групп, РК – репитерные концентраторы, Ком – коммутаторы)

При выборе сетевого оборудования надо учитывать множество факторов, в частности:

– уровень стандартизации оборудования и его совместимость с наиболее распространенными программными средствами;

– скорость передачи информации и возможность ее дальнейшего увеличения;

– возможные топологии сети и их комбинации (шина, пассивная звезда, пассивное дерево);

– метод управления обменом в сети (CSMA/CD, полный дуплекс или маркерный метод);

– разрешенные типы кабеля сети, максимальную его длину, защищенность от помех;

– стоимость и технические характеристики конкретных аппаратных средств (сетевых адаптеров, трансиверов, репитеров, концентраторов, коммутаторов).

В настоящее время для организации локальных сетей в подавляющем большинстве случаев используется неэкранированная витая пара UTP. Более дорогие варианты на основе экранированной витой пары, оптоволоконного кабеля или беспроводных соединений применяются на предприятиях, где в этом существует действительно острая необходимость. Например, оптоволокно может использоваться для связи между удаленными сегментами сети без потери скорости.

При выборе сетевого программного обеспечения (ПО) надо, в первую очередь, учитывать следующие факторы:

– какую сеть поддерживает сетевое ПО: одноранговую, сеть на основе сервера или оба этих типа;

– максимальное количество пользователей (лучше брать с запасом не менее 20%);

– количество серверов и возможные их типы;

– совместимость с разными операционными системами и компьютерами, а также с другими сетевыми средствами;

– уровень производительности программных средств в различных режимах работы;

– степень надежности работы, разрешенные режимы доступа и степень защиты данных;

– какие сетевые службы поддерживаются;

– стоимость программного обеспечения, его эксплуатации и модернизации.

Еще до установки сети необходимо решить вопрос об управлении сетью. Даже в случае одноранговой сети лучше выделить для этого отдельного специалиста (администратора), который будет иметь всю информацию о конфигурации сети и распределении ресурсов и следить за корректным использованием сети всеми пользователями. Если сеть большая, то одним сетевым администратором уже не обойтись, нужна группа, возглавляемая системным администратором.

После установки и запуска сети решать эти вопросы, как правило, слишком поздно.

При проектировании следует определить возможные направления финансовых затрат (к данному этапу проектирования необходимые предпосылки для решения этой задачи уже имеются):

– дополнительные компьютеры и обновление существующих компьютеров. Необязательное направление затрат: при достаточном количестве и качестве существующих компьютеров их обновление не требуется (или требуется в минимальном объеме – например, для установки более современных сетевых карт); в одноранговой сети не нужен (хотя и желателен) также специальный файл-сервер.

– сетевые аппаратные средства (кабели и все, что необходимо для организации кабельной системы, сетевые принтеры, активные сетевые устройства – повторители, концентраторы, маршрутизаторы и т.д.).

– сетевые программные средства, прежде всего, сетевая ОС на необходимое число рабочих станций (с запасом).

– оплата работы приглашенных специалистов при организации кабельной системы, установке и настройке сетевой ОС, при проведении периодической профилактики и срочного ремонта. Необязательное направление затрат: для небольших сетей со многими из этих работ может и должен справляться штатный сетевой администратор (возможно, с помощью других сотрудников данного предприятия).

Спроектировать компьютерную сеть (собрать исходные данные; выбрать: размер и структуру сети, оборудование, сетевые программные средства; спроектировать кабельную систему; рассчитать примерную стоимость оборудования) в соответствии с № варианта.

Контрольные вопросы:

1.Какие этапы включает процесс построения сети?

2. Классификация локальных вычислительных сетей?

3. Базовые технологии локальных сетей?

4. Топология локальной вычислительной сети?

5.Маршрутизатор, коммутатор?

6.Плюсы и минусы Microsoft Office Visio?

Статьи к прочтению:

Этапы проектирования локальных сетей

Рекомендуем почитать

Наверх