Как подключить трехфазный мотор на 220. Как подобрать конденсатор для трехфазного двигателя в однофазной сети

Настройка Bluetooth 25.01.2021
Настройка Bluetooth

Одна из причин подключение трехфазного двигателя к однофазной цепи заключается в том, что подача электрической энергии на промышленные объекты и для бытовых нужд кардинально отличается.

Для промышленного производства электротехнические предприятия изготавливают электродвигатели с трехфазной системой питания и для запуска двигателя нужно иметь 3 фазы.

Что делать, если вы приобрели двигатели для промышленного производства, а нужно подключить к домашней розетке? Некоторые умелые специалисты, с помощью нехитрых электрических схем, приспосабливают электромотор к однофазной сети.

Схема подключения обмоток

Чтобы разобраться человеку, впервые столкнувшемуся с подобной проблемой, необходимо знать, как устроен трехфазный двигатель. Если открыть коммутационную крышку, то можно увидеть колодку и присоединенными к клеммам провода, их количество будет равно 6.

Трехфазный электродвигатель имеет три обмотки и соответственно 6 выводов, они имеют начало и конец, и соединяются в электрические конфигурации под названием – «звезда и треугольник».

Это интересно, но большинстве случаев стандартная коммутация формируется в «звезду», так как соединение в «треугольник» ведет за собой потерю мощность, но возрастают обороты двигателя. Бывает так, что провода находятся в произвольном положении и не подключены к разъемам или вообще нет клеммы. В таком случае необходимо воспользоваться прибором тестером или омметром.

Нужно прозвонить каждый провод и найти пару, это и будут три обмотки двигателя. Далее соединяем в конфигурацию «звезда» следующим образом: начало-конец-начало. Зажимаем три провода под одну клемму. Остаться должно три вывода, вот к ним и будет происходить дальнейшая коммутация.

Важно знать: в бытовой сети организована однофазная система питания или – «фаза и ноль». Эту конфигурация нужно использовать для подключения двигателя. С начало один провод от электромотора подключаем к любому проводу сети, потом, ко второму концу обмотки подключаем сетевой провод и туда же один конец конденсаторного блока.

Остается свободными последний провод от двигателя и неподключенный контакт набора конденсаторов, их соединяем и схема запуска трехфазного двигателя в однофазную сеть готова. Графически их можно изобразить следующим образом:

  • А, В, С — линии 3-х фазной цепи.
  • Ф и О – фаза и ноль.
  • С – конденсатор.

В промышленном производстве используется 3-х фазная система подачи напряжения. Согласно стандартам ПУЭ все шины сети маркируются буквенными значениями и имеют соответствующий цвет:

А – желтый.

В – зеленый.

С – красный.

Примечательно то, что независимо от расположений фаз, в , шина «В», с зеленым цветом, должна быть всегда посредине. Внимание! Межфазовое напряжение измеряется специальным прибором, прошедшим госпроверку и рабочим, имеющим соответствующую группу допуска. В идеале межфазное напряжение составляет – 380 вольт.

Устройство электродвигателя

Чаще всего нам в руки попадают электромоторы с трехфазной асинхронной схемой работы. Что собой представляет двигатель? Это вал, на котором впрессован короткозамкнутый ротор, на краях которого находятся подшипники скольжения.

Статор изготавливается из трансформаторной стали, с большой магнитной проницаемостью, цилиндрической формы с продольными канавками для укладки провода и поверхностным изолирующим слоем.

По специальной технологии, провода обмоток укладываются в каналы статора и изолируются от корпуса. Симбиоз статора и ротора и называется – электродвигатель асинхронного типа.

Как рассчитать емкость конденсатора

Чтобы запустить 3-х фазный двигатель от бытовой сети необходимо произвести некоторые манипуляции с конденсаторными блоками. Для запуска электродвигателя без «нагрузки», нужно подобрать емкость конденсатора исходя из формулы 7-10 мФ на 100 Вт мощности двигателя.

Если вы внимательно присмотритесь к боковой части электромотора, то найдете его паспорт, где и указана мощность агрегата. Например: если двигатель имеет мощность 0,5 кВт, то емкость конденсатора должна составлять 35 – 50 мФ.

Надо отметить то, что конденсаторы используются только «постоянные», ни в коем случае «электролитические». Обратите внимание на надписи, которые находятся на боковой части корпуса, они говорят о емкости конденсатора, измеряемые в микрофарадах, и напряжение, на которое они рассчитаны.

Блок пусковых конденсаторов собирается именно по такой формуле. Использования двигателя, как силового агрегата: подсоединить его к водяной помпе или использовать как циркулярную пилу, необходим добавочный блок конденсаторов. Эта конструкция называется – рабочим блокам конденсаторов.

Запускают двигатель и путем последовательного или параллельного подсоединения подбирают емкость конденсатора так, чтобы звук от электромотора исходил самый тихий, но есть более точным метод подборки емкости.

Для выверенного подбора конденсатора необходимо иметь прибор под названием – магазин емкостей. Экспериментируя с разными комбинациями подключения, добиваются одинакового значения напряжения между всеми тремя обмотками. Затем считывают емкость и подбирают нужный конденсатор.

Необходимые материалы

В процессе подключения 3-х фазного двигателя в однофазную сеть понадобятся некоторые материалы и приборы:

  • Набор конденсаторов с разными номиналами или «магазин емкостей».
  • Электрические провода, типа ПВ-2,5.
  • Вольтметр или тестер.
  • Переключатель на 3 положения.

Под рукой должны находиться элементарные инструменты: индикатор напряжение, диэлектрические пассатижи, изоляционная лента, крепеж.

Параллельное и последовательное соединение конденсаторов

Конденсатор относится к электронным деталям и при разных комбинациях коммутации, его номинальные значения могут меняться.

Параллельное соединение:

Последовательное соединение:

Следует отметить, что при параллельном соединении конденсаторов емкости будут складываться, но при этом напряжение уменьшится и наоборот последовательный вариант дает увеличение напряжения и уменьшение емкости.

В заключение можно сказать, что безвыходных положений нет, надо только приложить немного старания и результат не заставит себя ждать. Электротехника познавательная и полезная наука.

Как подключить трехфазный двигатель в однофазную сеть, смотрите инструкцию в следующем видео:

Для работы любого асинхронного двигателя необходимо наличие вращающегося электромагнитного поля. При включении в трехфазную электрическую сеть это условие легко соблюдается: три фазы, сдвинутые относительно друг друга на 120°, создают поле, напряженность которого в пределах пространства статора изменяется именно циклически.

Однако, бытовые сети в подавляющем большинстве однофазные — с напряжением 220 вольт. Создать вращающееся электромагнитное поле в такой сети уже не так просто, поэтому однофазные асинхронные двигатели не так распространены в использовании как их трехфазные аналоги.

Тем не менее, однофазные «асинхронники» довольно успешно применяются в бытовых вентиляторных, насосных и прочих установках. Так как мощность бытовой однофазной сети обычно совсем не велика, а энергетические показатели и характеристики однофазных двигателей в целом существенно отстают от характеристик двигателей трехфазных, то однофазный асинхронный двигатель редко имеет мощность, превышающую один киловатт.

Ротор однофазных асинхронных двигателей выполняется короткозамкнутым, так как в силу маломощности этих машин отсутствует необходимость регулирования по роторной цепи.

Цепь статора представляет собой две обмотки, включаемые в сеть параллельно. Одна из них является рабочей и она обеспечивает работу двигателя в сети 220 вольт, а вторую можно считать вспомогательной, или пусковой.

В цепь второй обмотки включается элемент, обеспечивающий разность токов в обмотках. необходимую для создания вращающегося поля. В подавляющем большинстве случаев этот элемент является конденсатором, но существуют однофазные двигатели, имеющие в своем составе для этих целей индуктивность или резистор.

Конденсаторные электродвигатели конструктивно делятся на следующие двигатели:

1) с пусковым; 2) с пусковым и рабочим; 3) с рабочим конденсатором.

В первом и наиболее распространенном случае дополнительная обмотка и конденсатор включаются в сеть только на время пуска, а по его окончании выводятся из работы.

Реализуется такая схема при помощи реле или просто кнопкой, зажимаемой оператором на время пуска. В случае с рабочим конденсатором он вместе со своей обмоткой постоянно включен в цепь.

Электрические машины с пусковым конденсатором имеют хороший пусковой момент при небольших бросках тока во время пуска. Однако, во время работы в номинальном режиме показатели таких двигателей резко снижаются из-за того, что поле одной рабочей обмотки является не круговым, а эллиптическим.

Двигатели с рабочим конденсатором, напротив, обеспечивают хорошие рабочие номинальные параметры при посредственных пусковых. Двигатели, имеющие в конструкции пусковой и рабочий конденсатор, являются компромиссом между двумя предыдущими решениями и имеют средние показатели, как во время пуска, так и во время работы.

В целом, схемам с пусковым конденсатором отдается предпочтение при тяжелом пуске, а схемам с рабочим конденсатором – если нет потребности в хорошем пусковом моменте.

Стоит отметить, что при подключении однофазного двигателя, у пользователя почти всегда есть выбор, какой из схем отдать предпочтение, поскольку все выводы двигателя: от конденсатора, от вспомогательной обмотки и от главной обмотки собираются в клеммной коробке (барно).

При отсутствии конденсатора, или при необходимости переделать схему можно подобрать рабочий конденсатор из расчета 0,7-0,8 мкФ на киловатт мощности, а пусковой – в 2,5 раза больше.

Определить рабочую и пусковую обмотку статора в коробке можно по сечению проводов: у пусковой оно будет меньше. Зачастую, пусковая и рабочая обмотка соединяются прямо в корпусе двигателя и выводятся наружу одним общим выводом.

Возможность осуществления реверсирования при управлении такой электрической машины не представляется возможной, поскольку нельзя поменять местами концы пусковой обмотки.

А определить, какой из трех силовых выводов является общим, какой пусковым и какой рабочим, можно, только, прозвонив их относительно друг друга. Наибольшое сопротивление будет между пусковым и рабочим выводом, а сопротивление между общим и пусковым выводом будет больше сопротивления между рабочим и общим выводом.

Асинхронные двигателя рассчитаны на подключение к трехфазной сети 380В и 220В. Ниже в качестве примера есть две бирки, на которых изображено:

— тип двигателя
— род тока — переменный (трёх фазный)
— частота — (50Гц)
— мощность — (0,25kW)
— обороты в минуту — (1370 об/мин)
— возможность соединения обмоток – треугольник / звезда
— номинальное напряжение двигателя – 220В/380В
— номинальный ток двигателя — 2,0/1,16А

Заостряю внимание!
Указанная мощность на бирке электродвигателя, это не электрическая, а механическая мощность на валу. Сейчас попробую объяснить по формуле мощность трехфазного тока.

Р = 1,73 * 220 * 2,0 * 0,67 = 510 (Вт) для напряжения 220В
Р = 1,73 * 380 * 1,16 * 0,67 =510,9 (Вт) для напряжения 380В

Делаем вывод:
По результату решения видно, что электрическая мощность больше механической мощности. Это естественно, так как у двигателя должен быть запас мощности, для компенсации потерь на создание вращающегося магнитного поля, потери напряжения в проводах.

На этой бирке видно, что обмотки электродвигателя можно соединить, как треугольником (220В), так звездой (380в). На клемме двигателя есть шесть выводов
(С1, С2, С3, С4, С5, С6).

А на этой бирке обмотки уже соединены внутри двигателя — звездой.
На клемме только три вывода (С1, С2, С3).

На рисунке изображена схема соединение обмоток асинхронного двигателя звездой. (380В/220В)

На схеме обозначено красными стрелками распределение напряжения в обмотках двигателя, что на одну обмотку распределяется напряжение одной фазы 220В, а напряжение двух обмоток складывается из междуфазного (линейного) напряжения 380В.

Из этого следует рекомендация, как приспособить трехфазный двигатель в однофазную сеть 220В. Необходимо посмотреть на бирке двигателя, на какое напряжение рассчитаны его обмотки, есть возможность соединения обмоток звездой и треугольником.

Если есть возможность изменить схему соединения обмоток на клемме, изменяем её, соединение обмоток треугольником – 220В в этом случи двигатель, потеряет меньше мощности, так как распределение напряжение для каждой обмотки будет одинаково 220В.

Соединение обмоток на клемме звездой. Начало обмоток — (С1; С2; С3;) подключатся к сети, а концы – (С6; С4; С5;) обмоток соединяются в месте перемычкой.

Соединение обмоток на клемме треугольником. Устанавливаются перемычки между выводами (С1 – С6); (С2 – С4); (С3 – С5), а к сети подключаются вывода — (С1; С2; С3;).

Схема подключения асинхронного двигателя в однофазную сеть через конденсаторы. Соединение обмоток треугольником с подключением рабочих и пусковых конденсаторов.

Есть двигатель, у которого обмотки рассчитаны для подключения к сети 220В/127В. При схеме соединение обмоток звездой его подключают к трехфазной сети 220В, а при схеме соединение обмоток треугольником подключают к трехфазной сети 127В.

Таблица 1. Технические характеристики некоторых конденсаторов.

Самый распространенный способ, как запустить двигатель:
это фазосдвигающий конденсатор.
В этом случае потеряется мощность двигателя.
Полезная мощность электродвигателя составит — 50. 60% от его мощности.

Приступим:
Какие конденсаторы применяем?
Выбираем масляные конденсаторы,
по напряжению, не менее 300 — 400В.

Что бы набрать ёмкость рабочих конденсаторов необходимо:
выполнить параллельное соединение конденсаторов.

Параллельное соединение конденсатора

Теперь нужно выбрать ёмкость пусковых конденсаторов:
— пусковая ёмкость конденсаторов должна быть больше в три раза рабочих конденсаторов.

Пусковые конденсаторы необходимы только при запуске двигателя.
Что будет если пусковые конденсаторы не отключать из схемы при работе двигателя?
Это не допустимо. Когда двигатель наберёт номинальные обороты, пусковые конденсаторы будут наводить большой перекос по току в обмотках двигателя,
тем самым вызовет перегрев обмоток двигателя.

Есть электронная книга «Шпаргалка мастеру «, в которой объясняется простым доступным языком, подключение двигателей, магнитных пускателей и т.п.

Как подключить трёхфазный электродвигатель если есть только 220 вольт?

Самыми распространенными приводами различных электрических машин в мире являются асинхронные двигатели. Они были изобретены еще в XIX веке и очень быстро, в силу простоты своей конструкции, надежности и долговечности, используются широко и в промышленности, и в быту.

Однако далеко не все потребители электрической энергии обеспечены трехфазным электроснабжением, что затрудняет применение надежных помощников человека – трехфазных электродвигателей. Но выход, достаточно просто реализуемый на практике, все же есть. Нужно только сделать подключение двигателя, используя специальную схему.

Но вначале стоит немного узнать о принципах работы трехфазных электродвигателей и о их подключении.

Каким образом асинхронный двигатель будет работать при подключении в двухфазную сеть

На статоре асинхронного двигателя помещаются три обмотки, которые обозначаются буквами C1, C2— C6. Первой обмотке принадлежат выводы C1 и C4, второй С2 и C5, а третьей C3 и C6, причем C1— С6 – это начала обмоток, а C4— C6 – их конец. В современных двигателях принята несколько иная система маркировки, обозначающая обмотки буквами U, V, W, а их начало и конец обозначают цифрами 1 и 2. Например, началу первой и обмотки C1 соответствует U1, концу третей C6 соответствует W2 и так далее.

Все выводы обмоток смонтированы в специальной клеммной коробке, которая есть у любого асинхронного двигателя. На табличке, которая должна быть на каждом двигателе обозначены его мощность, рабочее напряжение (380/220 В или 220/127 В), а также возможность Подключения по двум схемам: «звездой» или «треугольником».

Стоит учитывать, что мощность асинхронной машины при подключении в однофазную сеть всегда будет на 50-75% меньше, чем при трехфазном подключении.

Схема подключения к однофазной сети 220 вольт

Если просто подключить трехфазный двигатель к сети 220 вольт просто соединив обмотки с питающей сетью, то ротор не будет двигаться по той простой причине, что отсутствует вращающееся магнитное поле. Для того, чтобы его создать необходимо сдвинуть фазы на обмотках при помощи специальной схемы.

Из курса электротехники известно, что конденсатор, включенный в электрическую цепь переменного тока, будет сдвигать фазу напряжения. Это происходит из-за того, что во время его заряда происходит постепенное возрастание напряжения, время которого определяется емкостью конденсатора и величиной протекающего тока.

Получается, что разность потенциалов на выводах конденсатора будет всегда опаздывать по отношению к питающей сети. Этим эффектом и пользуются для подключения трехфазных двигателей в однофазную сеть.

На рисунке представлена схема подключения однофазного двигателя при разных способах. Очевидно, что напряжение между точками A и C. также B и C будет расти с запаздыванием, что создаст эффект вращающегося магнитного поля. Номинал конденсатора в соединениях типа «треугольник рассчитывается по формуле: C=4800*I/U, где I – это рабочий ток, а U– напряжение. Емкость в этой формуле вычисляется в микрофарадах.

В соединениях по способу «звезда», которое наименее предпочтительно нужно использовать в однофазных сетях из-за меньшей отдаваемой мощности, применяют другую формулу C=2800*I/U. Очевидно, что конденсаторы требуют меньших номиналов, что объясняется меньшими пусковыми и рабочими токами.

Подключение высокомощных устройств в однофазную сеть

Представленная выше схема подходит только для тех трехфазных электродвигателей, чья мощность не превышает 1,5 кВт. При большей мощности потребуется применение другой схемы, которая помимо рабочих характеристик гарантированно обеспечит пуск двигателя и его выход в рабочий режим. Такая схема представлена на следующем рисунке, где дополнительно присутствует возможность реверса двигателя.

Конденсатор Сp обеспечивает работу двигателя в штатном режиме, а Cп – нужен при пуске и разгоне двигателя, который делается в течение нескольких секунд. Резистор R разряжает конденсатор после запуска и размыкания кнопочного выключателя Кн . а переключатель SA служит для реверса.

Емкость пускового конденсатора обычно применяется в два раза большей, чем емкость рабочего конденсатора. Для того чтобы набрать нужную емкость, используют собранные батареи из конденсаторов. Известно, что параллельное соединение конденсаторов суммирует их емкость, а последовательное – обратно пропорционально.

При выборе номиналов конденсаторов руководствуются тем, что их рабочее напряжение должно быть больше напряжения в сети минимум на одну ступень, а это обеспечит их надежную работу при пуске.

Современная элементная база позволяет использовать конденсаторы высокой емкости при небольших габаритах, что значительно упрощает подключение трехфазных двигателей в однофазную сеть 220 вольт.

  • Асинхронные машины могут подключаться и в однофазные сети 220 вольт при помощи фазосдвигающих конденсаторов, номинал которых рассчитывается, исходя их рабочего напряжения и потребляемого тока.
  • Двигатели, имеющие мощность свыше 1,5 кВт, требуют подключения и пускового конденсатора.
  • Подключение способом «треугольник» является основным в однофазных сетях.

    Узнайте как всё подключается на практике из видео

    Как подключить однофазный двигатель

    Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

    Асинхронный или коллекторный: как отличить

    Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

    Так выглядит новый однофазный конденсаторный двигатель

    Как устроены коллекторные движки

    Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

    Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

    Строение коллекторного двигателя

    Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

    Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

    Асинхронные

    Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

    Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

    Строение асинхронного двигателя

    Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

    Схемы подключения однофазных асинхронных двигателей

    С пусковой обмоткой

    Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

    Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

    Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

    Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

    Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

    • один с рабочей обмотки — рабочий;
    • с пусковой обмотки;
    • общий.
      Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС
  • подключение однофазного двигателя

    Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайн ие (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим ). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

    Конденсаторный

    При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

    Схемы подключения однофазного конденсаторного двигателя

    Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки. например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Схема с двумя конденсаторами

    Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

    При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

    Подбор конденсаторов

    Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

    • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
    • пусковой — в 2-3 раза больше.

    Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

    Изменение направления движения мотора

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

    Как все может выглядеть на практике

    Как подключить асинхронный двигатель

    Как подключить трех фазный двигатель в сеть переменного тока напряжением в 220 В — спросите вы. Ведь на самом двигателе 3 фазы а сеть имеет 2 провода. Давай попробуем с этим разобраться.

    Внешний вид асинхронного двигателя

    Асинхронными двигателями они называются потому что у них отличаются частоты вращения магнитного поля статора и ротора. Получается что ротор пытается догнать или сравнять эти частоты. Таким образом и происходит вращение.

    Схема соединения обмоток статора асинхронного двигателя

    Обмотки статора, которых там 3 штуки имеют 2 способа подключения:

    • соединение в звезду;
    • соединение в треугольник.

    На крышке двигателя имеются выводы которые обозначаються как C1-C6. C1-C3 это концы обмоток, а C4-C6 это их начала. Как осущствляеться подсоединение обмоток в ту или иную конйигурация показано на рисунках ниже.

    Как работает асинхронный двигатель

    Принцип действия таких двигателей основан на всеми известным законом электромагнитной индукции. Статор двигателя имеет 3 обмотки на них поочередно подается напряжение. В обмотках возникает электрический ток который также поочередно появляется в этих обмотках.

    Электрический ток как известно создает «вокруг» себя переменное магнитное поле. А по закону электромагнитной индукции переменное магнитное поле наводит в металле электрический ток. В результате в обмотке ротора наводится электрический ток. Данный ток создает свое магнитное поле которое взаимодействует с магнитным полем статора. Получается своего рода аналог двух магнитов которые взаимодействуют с собой. Как отталкиваются и притягиваются магниты, объяснять думаю не стоит.

    В роторе не подводиться электрический ток — это стоит понимать. Обмотки ротора замыкаются между собой при помощи блока переменных сопротивлений. Переменное сопротивление используется в этом случае для регулировки частоты вращения двигателя. Изменяя при помощи него ток ротора меняется сила взаимодействия ротора и статора.

    Схема подключения асинхронного двигателя в сеть 220В

    Для того чтобы подключить асинхронный двигатель нам нужно два вывода обмотки соеденить через конденсатор между собой и сделать вывод. При подсоединении нашего асинхронника к сети 220В по схеме представленной выше, выдаваимая им мощность будет составлять 0.7 от номинальной. Это происходит потому что мы присоединяем 3-х вахный двигатель в одно вазную сеть. Для расчета емкости можно использовать приближенную формулу:

    С — емкость в мкФ

    P — мощность двигателя в Вт

    Рабочее напряжение конденсатора должно быть больше напряжения в сети. На схеме также представлен пусковой конденсатор, номинал его емкости долже быть в 3-4 раза больше рабочей емкости. Пусковой конденсатор необходим для компенсации значительных пусковых токов в момент запуска двигателя, т. к. возникают значительные напряжения самоиндукции в момент пуска.

    Довольно часто получаеться так что под рукой не оказывается нужной емкости. Для выхода из этой ситуации нужно использовать параллельное соединение конденсаторов.

    С асинхронным двигателем сталкивался практически каждый человек. Они устанавливаются в большое количество бытовой техники, а также рабочего электроинструмента. Однако часть моторов подключаются только через трехфазный провод.

    Асинхронные двигатели – это надежные и практичные моторы, которые применяются повсеместно. Они малошумные и обладают неплохой производительностью. В данной статье будут показаны основные принципы работы трехфазных электродвигателей, схема подключения в сеть 220В, а также различные хитрости при работе с ними.

    Большинство асинхронных двигателей работает от трехфазной сети, поэтому изначально рассмотрим понятие трехфазного тока. Трехфазный ток или трехфазная система электрических цепей – это система, состоящая из трех цепей, в которой действуют электродвижущие силы (ЭДС) одинаковой частоты, сдвинутые по фазе друг относительно друга на 1/3 периода(φ=2π/3) или 120°.

    Большинство производственных генераторов построено на основе трехфазной генерации тока. По сути, в них используют три генератора переменного тока, которые располагаются относительно друг друга под углом 120°.

    Схема с тремя генераторами предполагает, что из данного устройства будут выводиться 6 проводов (по два на каждый генератор переменного тока). Однако на практике видно, что бытовые, да и промышленные сети приходят к потребителю в виде трех проводов. Это делается в целях экономии электропроводки.

    Катушки генераторов соединяют таким образом, что на выходе получается 3 провода, а не 6. Также данная коммутация обмоток генерирует ток мощностью 380В, вместо привычных 220В. Именно такую трехфазную сеть привыкли видеть все пользователи.

    ИНФОРМАЦИЯ: Первая система трехфазного тока на шести проводах была изобретена Николой Тесла. Позже ее усовершенствовал и развил М. О. Доливо-Добровольский, который впервые предложил четырех и трех проводную систему, а также провел череду экспериментов, где выявил ряд преимуществ данной коммутации.

    Большинство асинхронных двигателей работают от трехфазной сети. Рассмотрим подробнее, как устроена работа данных агрегатов.

    Устройство асинхронного двигателя

    Начнем с внутренней архитектуры мотора. Внешне устройство трехфазного асинхронного двигателя практически ничем не отличается от других электромоторов. Пожалуй, единственное отличие, бросающиеся в глаза – это более толстый провод питания. Основные отличия спрятаны от глаз потребителя под металлическим кожухом мотора.

    Вскрыв коробку управления (место, куда заходят провода питания), можно увидеть 6 вводов проводов. Их подсоединяют двумя способами, в зависимости от того, какие характеристики нужно получить от данного мотора. Подробнее о способах коммутации трехфазных асинхронных двигателей будет рассказано ниже.

    Сняв защитный металлический кожух, можно увидеть рабочую часть мотора. Он состоит из:

    • вала;
    • подшипниковых узлов;
    • статора;
    • ротора.

    Основные компоненты мотора – это статор и ротор. Именно они приводят двигатель в движение.

    Разберем строение данных компонентов в трехфазном асинхронном двигателе:

    1. Статор. Имеет форму цилиндра, обычно состоит из листов стали. Вдоль листов располагаются продольные пазы, в которых находятся обмотки статора, изготовленные из обмоточного провода. Оси каждой обмотки расположены относительно друг друга под углом 120°. Концы обмоток соединяют методом треугольника или звезды.
    2. Ротор или сердечник мотора. Это цилиндрический узел, набранный из металлических пластин, между которыми располагаются алюминиевые стержни. По краям цилиндра конструкция замыкается накоротко торцевыми кольцами. Второе название ротора асинхронного двигателя – беличья клетка. В двигателях большой мощности вместо алюминия может применяться медь.

    Теперь стоит разобраться, на каких принципах построена работа асинхронного трехфазного двигателя.

    Принципы работы трехфазных асинхронных двигателей

    Трехфазный асинхронный двигатель работает за счет магнитных полей, которые создаются на обмотках статора. Токи, проходящие через каждую обмотки, имеют сдвиг в 120° относительно друг друга во временной и пространственной характеристике. Таким образом, совокупный магнитный поток на трех контурах является вращающим.

    На обмотках статора образуется замкнутая электрическая цепь. Она взаимодействует с магнитным полем статора. Так появляется пусковой момент двигателя. Он стремится повернуть ротор в направлении вращения магнитного поля статора. Со временем пусковой момент подходит к значению тормозного момент ротора, после чего он превышает его и ротор приводится в движение. В этот момент возникает эффект скольжения.

    ИНФОРМАЦИЯ: Скольжение - это величина, которая показывает, насколько синхронная частота магнитного поля статора больше, чем частота вращения ротора, в процентном соотношении.

    Рассмотрим данный параметр в разных ситуациях:

    1. На холостом ходу. Без нагрузки на валу скольжение имеет минимальное значение.
    2. При нарастающей нагрузке. С увеличением статического напряжения величина скольжения растет и может достигнуть критического значения. В случае, если мотор превысит данный показатель, может произойти «опрокидывание» двигателя.

    Параметр скольжения находится в диапазоне от 0 до 1. У асинхронных двигателей общего назначения данный параметр составляет 1-8%.

    Когда наступает равновесие между электромагнитным моментом ротора и тормозным моментом на валу мотора, процессы колебания величин прекращаются.

    При наступлении равновесия между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом, создаваемым нагрузкой на валу, процессы изменения величин прекратятся. Получается, что основной принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. При этом необходимо учитывать, что вращающийся момент возникает только в результате разности частоты вращения магнитных полей на обмотках мотора.

    Зная принцип работы асинхронного трехфазного двигателя, можно произвести его запуск. В этом случае стоит учитывать несколько вариантов подключения обмоток мотора.

    Способы подключения обмоток асинхронных двигателей

    Раскрутив блок управления двух простых двигателей асинхронного типа, можно увидеть по 6 выводов проводов в каждом из них. Однако их коммутация может значительно отличаться.

    В электротехнике принято подключать обмотки трехфазные асинхронных двигателей двумя способами:

    • звездой;
    • треугольником.

    Каждый тип подключения влияет на производительность двигателя, а также на его пиковые показатели мощности. Рассмотрим каждый из них по отдельности.

    Метод звезды

    В данном типе коммутации все выводы рабочих обмоток соединяются одной перемычкой в один узел. Его называют нейтральной точкой и обозначают буквой «О». Получается, что концы всех фазных обмоток соединятся в одном месте.

    На практике моторы с соединением по методу звезды обладают более мягким пуском. Такая комбинация подходит, например, для токарных станков или другой техники, где требуется медленный старт. Однако данный двигатель не может развивать максимально паспортной мощности.

    Метод треугольника

    Данная коммутация предполагает последовательное соединение концов фазных обмоток. На выводах проводах это выглядит, как попарное соединение каждой обмотки. Получается, что конец одной обмотки переходит в начало другой.

    Двигатели с таким соединением обмоток стартуют намного быстрее, чем моторы с коммутацией методом звезды. При этом они могут развивать максимальные мощности, предусмотренные заводом изготовителем.

    Трехфазные асинхронные двигатели проектируются, исходя из номинального питающего напряжения. В частности, все отечественные двигатели подразделяют на две категории:

    • для сетей 220/127В;
    • для сетей 380/220В.

    Моторы первой группы менее распространены в силу своих слабых мощностных характеристик. Чаще всего используют моторы второй группы.

    ВАЖНО: При коммутации обмоток мотора используют правило: для более низких значений напряжения выбирают подключение методом треугольника, для высоких – только методом звезды.

    Некоторые заядлые радиолюбители могут определить схему подключения мотора по звуку его пуска. Обычный человек может узнать о методе коммутации обмоток двигателя несколькими способами.

    Как определить, по какой схеме подключены обмотки двигателя?

    Метод коммутации обмотки двигателя влияет на его характеристики, однако все соединения выводов находятся под защитным кожухом, в блоке управления. Их попросту не видно, но не стоит отчаиваться. Есть способ, который позволяет узнать метод коммутации, не прибегая к разбору блока управления.

    Для этого достаточно заглянуть на номерную табличку, установленную на корпусе двигателя. На ней отмечают точные технические параметры, в том числе и метод коммутации. К примеру, на ней можно обнаружить следующие обозначения: 220/380В и геометрические обозначения треугольник/звезда. Эта последовательность говорит о том, что на моторе, работающим от сети 380В., установлена схема коммутации обмоток по типу «звезда».

    Однако данный способ не всегда срабатывает наверняка. Таблички на старых двигателях часто затерты либо вовсе потеряны. В таком случае придется раскручивать блок управления.

    Второй способ подразумевает визуальный осмотр выводных контактов. Контактная группа может быть соединена следующим способом:

    1. Одна перемычка на трех контактах с одной стороны выводов. К свободным выводом подведены проводу питания. Это метод звезда.
    2. Выводы соединены попарно тремя перемычками. На три вывода приходит три провода питания. Это метод треугольника.

    На некоторых моторах в блоке управления можно обнаружить всего три вывода. Это говорит о том, что коммутация произведена внутри самого двигателя, под защитным кожухом.

    Трехфазные моторы очень выносливы и ценятся в хозяйстве, ремонте и стройке. Но они бесполезны для домашнего использования, так как бытовая сеть может дать всего одну фазу, напряжением 220В. На самом деле, это не совсем верное суждение. Подключить трехфазный асинхронный двигатель к бытовой сети возможно. Это делается при помощи радиодетали – конденсатора. Разберем данный способ подробнее.

    Сдвиг фаз при помощи конденсаторов

    Моторы, в которых используют конденсаторы, называют конденсаторными двигателями. Сам конденсатор устанавливают в цепь статора так, чтобы он создавал сдвиг фазы в обмотках. Чаще всего данную схему используют при подключении трехфазных асинхронных двигателей к бытовой сети 220В.

    Для сдвига фаз потребуется подключить одну из обмоток в разрыв с конденсатором. При этом емкость конденсатора подбирают таким образом, чтобы сдвиг фаз на обмотках получился максимально приближенным к 90°. В этом случае для ротора создается максимальный крутящий момент.

    ВАЖНО: В данной схеме необходимо учесть модули магнитной индукции обмоток. Они должны быть одинаковыми. Это позволит создать суммарное магнитное поле, которое будет вращать ротор по кругу, а не по эллипсу. В этом случае ротор будет крутиться с большей эффективностью.

    Оптимальный сдвиг фазы достигается правильным подбором емкости конденсатора, как в пусковом, так и в рабочем режиме. Также правильное круговое магнитное поле зависит:

    • скорости вращения ротора;
    • напряжения сети;
    • числа витков обмотки;
    • подключенных конденсаторов.

    Если оптимальное значение одного из параметров отходит от нормы, то магнитное поле становится эллиптическим. Качественные характеристики двигателя сразу же упадут.

    Поэтому для решения разного типа задач подбирают двигатели с разными емкостями конденсаторов. Для обеспечения максимального пускового момента берут конденсатор большей емкости. Он обеспечивает оптимальный ток и фазу во время запуска мотора. В случае, когда пусковой момент не имеет значения, уделяют внимание только созданию необходимых условий для рабочего режима.

    Как подключить трехфазный электродвигатель в сеть 220 В?

    Рассмотрим самый простой способ подключения трехфазного асинхронного двигателя в бытовую сеть. Для этого потребуется набор ручных инструментов, конденсатор, а также минимальные знания электротехники и мультиметр.

    Итак, пошаговое руководство по подключению:

    1. Раскручиваем блок управления двигателя и смотрим схему подключения. Если применен метод звезды, необходимо перекрутить коммутацию на треугольник.
    2. Подсоединение производят только с одной стороны выводов обмоток. Для удобства обозначим их от 1 до 3.
    3. На 1-ый и 2-ой вывод подсоединяем конденсатор.
    4. На 1-ый и 3-ий вывод заводим провода питания 220В. При этом вывод 2 не трогаем. На нем остается только конденсатор.
    5. Включаем провод питания в сеть и проверяем работу двигателя.

    ВАЖНО: Расчет мощности конденсатора производят по формуле: на 100Вт /10 мкФ.

    Данный способ очень прост и безопасен. Перед подсоединением конденсатора и предварительным пуском двигателя, стоит проверить целостность контура проводки на пробитие по корпусу. Это можно сделать при помощи мультиметра.

    Как видно, схема довольно проста. Подключение не займет много времени и потребует минимум усилий. Есть и другие схемы подсоединения трехфазного двигателя в обычную сеть. Рассмотрим и их.

    ИНФОРМАЦИЯ: К сожалению не все трехфазные двигатели хорошо работают от бытовой сети. Некоторые могут попросту перегореть. К таким относятся моторы с двойной клеткой короткозамкнутого ротора (серия МА). Для использования трехфазных моторов в бытовой сети лучше использовать двигатели серии АО2, АПН, УАД, А, АО.

    Схема подключения трехфазных двигателей в однофазную сеть

    Для безопасной и корректной работы трехфазного асинхронного двигателя от бытовой сети необходимо использовать конденсатор. При этом его емкость должна зависеть от количества оборотов мотора.

    В практическом исполнении данное устройство изготовить довольно проблематично. Для решения данной задачи используют управлением двухступенчатое управление мотором. Таким образом, в момент пуска работают два конденсатора:

    • пусковой (Сп);
    • рабочий (Ср).

    После набора двигателем рабочих оборотов, пусковой конденсатор отключают.

    Рассмотрим схему подключения двигателя при помощи двух конденсаторов.

    В данном варианте предполагается использование двигателя в сети 220/380В. Схема:
    Обозначения: Ср – рабочий конденсатор; Сп – пусковой конденсатор; П1 – пакетный выключатель.

    Когда включают пакетный выключатель П1 происходит замыкание контактов П1.1 и П1.2. В этот момент необходимо нажать кнопку «Разгон». Когда двигатель выйдет на рабочие обороты, кнопку отпускают. Реверс двигателя осуществляется путем переключения тумблера SA1.

    Рассмотрим несколько формул для подключения обмоток разными методами:

    1. Для метода «звезда». Формула: Ср = 2800*(I/U); где Ср – емкость рабочего конденсатора (мкФ), I – потребляемый электродвигателем ток в (А), напряжение в сети (В).
    2. Для метода «треугольник». Формула: Ср = 4800*(I/U); где Ср – емкость рабочего конденсатора (мкФ), I – потребляемый электродвигателем ток в (А), напряжение в сети (В).

    Для любого метода коммутации рассчитывают потребляемый электродвигателем ток. Формула: I = P/(1.73Uŋ*cosϕ); где Р – мощность двигателя в Вт, указанная в его паспорте; ŋ – кпд; cosϕ- коэффициент мощности; U -напряжение в сети.

    В данной схеме емкость пускового конденсатора Сп подбирают в 2-2.5 раза выше емкости рабочего конденсатора. При этом все конденсаторы должны быть рассчитаны на напряжение превышающие напряжение сети в 1.5 раза.

    ИНФОРМАЦИЯ: Для бытовых сетей 220В хорошо подходят конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500В и выше. Для кратковременного подключения используют конденсаторы К50-3, ЭГЦ-М, КЭ-2 в качестве пусковых. При этом их рабочее напряжение должно быть не менее 450 В. Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют диодами

    Применение электролитических конденсаторов в качестве пусковых

    Для подключения трехфазных асинхронных электродвигателей в бытовую сеть используют, как правило, простые бумажные конденсаторы. За долгое время применения они показали себя не самым лучшим образом, поэтому сейчас большие бумажные конденсаторы практически не используются. Им на смену пришли оксидные (электролитические) конденсаторы. Они имеют меньшие габариты и широко распространены на рынках радиодеталей. Рассмотрим схему замены бумажного конденсатора на оксидный:

    Из схемы видно, что положительная волна переменного тока проходит через элементы VD1, С2, а отрицательная – через VD2, С2. Это говорит о том, что данные конденсаторы можно использовать с допустимым напряжением в 2 раза меньшим, чем у обычных конденсаторов аналогичной емкости. Емкость для оксидного конденсатора рассчитывается по тому же методу, что и для бумажных конденсаторов.

    ИНФОРМАЦИЯ: Так в схеме однофазной сети 220В используют бумажной конденсатор с напряжением 400В. При его замене на оксидный конденсатор, достаточно мощности 200В.

    Последовательное и параллельное соединение конденсаторов

    Стоит отметить, что у подключенного двигателя в бытовую сеть 220В, без особой нагрузки будет страдать одна из обмоток. Это контур, который подключается через конденсатор. В этом случае на него поступает ток, на 20-30% выше номинального. Из этого следует, что на недогруженном моторе емкость конденсатора необходимо уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

    Решить данную задачу поможет замена одного большого конденсатора на несколько, соединенных в цепь параллельным способом. Так можно подключать или отключать ненужные компоненты, используя конденсаторы в качестве пусковых. При параллельном соединении суммарную емкость в мкФ считают по формуле: Cобщ = C1 + C1 + … + Сn.

    Необходимые инструменты и комплектующие

    Любой монтаж вышеперечисленных схем потребует минимальных знаний электротехники, а также навыков работы с радиоэлектроникой и пайкой мелких деталей.

    Из инструментов потребуется:

    1. Набор отверток для сбора/разбора блока управления двигателя. Для старых двигателей лучше подбирать мощные плоские отвертки из хорошей стали. За длительное время работы двигателя болты в корпусе могут «прикипеть». Для их откручивания потребуется немало сил и хороший инструмент.
    2. Пассатижи для обжатия проводов и других манипуляций.
    3. Острый нож для снятия изоляции.
    4. Паяльник.
    5. Канифоль и припой.
    6. Индикаторная отвертка для поиска фазы, а также индикации разрыва на кабеле.
    7. Мультиметр. Один из основных диагностирующих устройств.

    Также потребуются радиодетали:

    • Конденсаторы.
    • Кнопка пуска.
    • Магнитный пускатель.
    • Тумблер реверса.
    • Контактная плата.

    Перечисленных инструментов и радиокомпонентов хватит для сборки представленных выше схем.

    ВАЖНО: Не подключайте двигатель в сеть, не проверив работу собранной схемы. Ее можно протестировать при помощи мультиметра. Это убережет технику от короткого замыкания.

    Заключение

    Трехфазный асинхронный двигатель – это надежный и эффективный мотор, который можно подключить как к трехфазной, так и однофазной сети. При этом необходимо соблюдать ряд правил. В частности – правильно рассчитывать емкости конденсаторов. Если все расчеты верны, двигатель будет работать в оптимальном режиме с высоким уровнем КПД.

    Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме "звезда" (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или "треугольник" (концы одной обмотки соединены с началом другой).

    В распределительной коробке контакты обычно сдвинуты - напротив С1 не С4, а С6, напротив С2 - С4.

    При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

    Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой - подключение третьего контакта через фазосдвигающий конденсатор.

    Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

    Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно - если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

    Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети - 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В - для "звезды", 220 - для "треугольника). Большее напряжение для "звезды", меньшее - для "треугольника". В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

    Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как "треугольником" (на 220В), так и "звездой" (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему "треугольник", поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении "звездой".

    Табличка Б информирует, что обмотки двигателя подсоединены по схеме "звезда", и в распределительной коробке не предусмотрена возможность переключить их на "треугольник" (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме "звезда", или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме "треугольник".

    Если рабочее напряжение двигателя составляет 220/127В, то к однофазной сети на 220В двигатель можно подключить только по схеме "звезда". При подключении 220В по схеме "треугольник", двигатель сгорит.

    Начала и концы обмоток (различные варианты)

    Пожалуй, основная сложность подключения трехфазного двигателя в однофазную сеть заключается в том, чтобы разобраться в проводах, выходящих в распределительную коробку или, при отсутствии последней, просто выведенных наружу двигателя.

    Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме "треугольник". В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

    Если в двигателе обмотки соединены "звездой", и имеется возможность изменить ее на "треугольник", то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на "треугольник", использовав для этого перемычки.

    Определение начал и концов обмоток . Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):

    • определению пар проводов, относящихся к одной обмотке;
    • нахождению начала и конца обмоток.

    Первая задача решается "прозваниванием" всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

    Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

    К концам одной обмотки (например, A ) подключается батарейка, к концам другой (например, B ) - стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В . Таким же образом проверяется и обмотка А - с батарейкой, подсоединенной к обмотке C или B .

    В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого - как концы (А2, В2, С2) и соединить их по необходимой схеме - "треугольник" или "звезда" (если напряжение двигателя 220/127В).

    Извлечение недостающих концов . Пожалуй, самый сложный случай - когда двигатель имеет соединение обмоток по схеме "звезда", и нет возможности переключить ее на "треугольник" (в распределительную коробку выведено всего лишь три провода - начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме "треугольник" необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

    Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме "треугольник", подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме "звезда", смирившись со значительной потерей мощности.

    Схемы подключения трехфазного двигателя в однофазную сеть

    Подключение по схеме "треугольник" . В случае бытовой сети, с точки зрения получения большей выходной мощности наиболее целесообразным является однофазное подключение трехфазных двигателей по схеме "треугольник". При этом их мощность может достигать 70% от номинальной. Два контакта в распределительной коробке подсоединяются непосредственно к проводам однофазной сети (220В), а третий - через рабочий конденсатор Ср к любому из двух первых контактов или проводам сети.

    Обеспечение пуска . Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.


    Подключение трехфазного электродвигателя в однофазную сеть по схеме "треугольник" с пусковым конденсатором Сп

    Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными - пока не будет нажата кнопка "стоп".

    Реверс . Направление вращения двигателя зависит от того, к какому контакту ("фазе") подсоединена третья фазная обмотка.

    Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

    На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

    Подключение по схеме "звезда" . Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

    Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения "звездой" емкость рассчитывается по формуле:

    Для соединения "треугольником":

    Где Ср - емкость рабочего конденсатора в мкФ, I - ток в А, U - напряжение сети в В. Ток рассчитывается по формуле:

    I = P/(1.73 U n cosф)

    Где Р - мощность электродвигателя кВт; n - КПД двигателя; cosф - коэффициент мощности, 1.73 - коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

    На практике величину емкости рабочего конденсатора при подсоединении "треугольником" можно посчитать по упрощенной формуле C = 70 Pн, где Pн - номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

    Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.

    При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

    Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

    Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

    Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

    Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

    Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

    Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: C общ = C 1 + C 1 + ... + С n .

    В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

    При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

    Необходимо подключить к домашней сети на 220 В. Так как двигатель при этом не запустится, необходимо изменить в нем некоторые детали. Это можно без труда сделать самостоятельно. Даже несмотря на то что КПД несколько снизится, такой подход бывает оправданным.

    Трехфазные и однофазные двигатели

    Чтобы разобраться, как подключить электродвигатель с 380 на узнаем, что значит питание на 380 вольт.

    Трехфазные двигатели имеют множество преимуществ по сравнению с бытовыми однофазными. Поэтому их применение в промышленности обширно. И дело заключается не только в мощности, но и в коэффициенте полезного действия. В них также предусмотрены пусковые обмотки и конденсаторы. Это упрощает конструкцию механизма. К примеру, пусковое защитное реле холодильника отслеживает, сколько врублено обмотки. А в трехфазном двигателе в этом элементе необходимость отпадает.

    Это достигается тремя фазами, во время работы которых внутри статора вращается электромагнитное поле.

    Почему 380 В?

    Когда поле внутри статора вращается, ротор двигается также. Обороты не совпадают с пятьюдесятью Герцами сети из-за того, что больше обмоток, количество полюсов отличное, а также по разным причинам происходит проскальзывание. Эти показатели применяются для регуляции вращения моторного вала.

    Все три фазы имеют значение по 220 В. Однако разница между любыми двумя из них в любое время будет отличным от 220. Так и получится 380 Вольт. То есть двигатель применяет для работы, при этом имеется сдвиг фаз, составляющий сто двадцать градусов.

    Потому как подключить электродвигатель 380 на 220 Вольт напрямую невозможно, приходится использовать ухищрения. Конденсатор считается самым простым способом. Когда емкость проходит фазу, последняя изменяется на девяносто градусов. Хоть до ста двадцати она не доходит, этого достаточно для запуска и работы трехфазного двигателя.

    Как подключить электродвигатель с 380 на 220 В

    Для реализации задачи необходимо понимать, как устроены обмотки. Обычно корпус защищен кожухом, а под ним расположена разводка. Сняв его, нужно изучить содержимое. Часто здесь можно найти схему соединений. Чтобы к сети 380-220 состоялось, используется коммутация в форме звезды. Концы обмоток находятся в общей точке, которая называется нейтралью. Фазы подаются на противоположную сторону.

    «Звезду» придется изменить. Для этого обмотки мотора необходимо соединить в другую форму - в виде треугольника, объединив их на концах друг с другом.

    Как подключить электродвигатель с 380 на 220: схемы

    Схема может выглядеть следующим образом:

    • напряжение сети прикладывается к третьей обмотке;
    • тогда на первую обмотку напряжение перейдет через конденсатор при фазовом сдвиге в девяносто градусов;
    • на второй обмотке скажется разница напряжений.

    Понятно, что сдвиг фаз получится на девяносто и сорок пять градусов. Из-за этого вращение равномерным не получится. К тому же форма фазы на второй обмотке не будет синусоидальной. Поэтому, после того как подключить трехфазный электродвигатель к 220 вольтам удастся, он не сможет реализовываться без потерь мощности. Иногда вал даже залипает и перестает крутиться.

    Рабочая емкость

    После набора оборотов емкость пуска уже будет не нужна, так как сопротивление движению станет незначительным. Для разряжения емкости ее укорачивают на сопротивление, через которое ток уже не пройдет. Для правильного выбора рабочей и пусковой емкости в первую очередь нужно учитывать, что рабочее конденсаторное напряжение должно существенно перекрывать 220 Вольт. Минимум оно должно составлять 400 В. Также нужно обратить внимание на провода, чтобы токи были предназначены для однофазной сети.

    При слишком малой рабочей емкости вал будет залипать, поэтому для него используется начальное ускорение.

    Рабочая емкость также зависит от следующих факторов:

    • Чем мощнее мотор, тем больше конденсаторный номинал потребуется. Если значение составляет 250 Вт, то хватит и нескольких десятков мкФ. Однако если мощность будет выше, то и номинал может считаться сотнями. Конденсаторы лучше приобретать пленочные, потому что электрические придется дополнительно доделывать (они предназначены для постоянного, а не переменного тока, и без переделок могут взорваться).
    • Чем больше обороты мотора, тем и номинал необходим выше. Если взять двигатель на 3000 оборотов в минуту и мощностью 2,2 кВт, то батарея ему потребуется от 200 до 250 мкФ. А это огромное значение.

    Еще эта емкость зависит и от нагрузки.

    Завершающий этап

    Известно, что электрический двигатель 380 В в 220 Вольтах будет лучше работать в том случае, если напряжения получатся с равными значениями. Для этого обмотку, подсоединяющуюся к сети, трогать не нужно, но потенциал измеряется на обеих других.

    У асинхронного мотора имеется свое Необходимо определить минимум, при котором он начнет вращение. После этого номинал понемногу увеличивают до тех пор, пока все обмотки не выравняются.

    Но когда двигатель раскрутится, может получиться, что равенство нарушится. Это происходтит из-за снижения сопротивления. Поэтому, перед тем как подключить электродвигатель с 380 на 220 Вольт и зафиксировать это, нужно сравнять значения и при работающем агрегате.

    Напряжение может быть и выше 220 В. Посмотрите, чтобы обеспечивалась стабильная стыковка контактов, и не было потери мощности или перегрева. Лучше всего коммутация производится на специальных клеммах с закрепленными болтами. После того как подключить электродвигатель с 380 на 220 Вольт получилось с необходимыми параметрами, на агрегат снова надевают кожух, а провода пропускают по бокам через резиновый уплотнитель.

    Что еще может случиться и как решить проблемы

    Нередко после сборки обнаруживается, что вал вращается не в ту сторону, в которую нужно. Направление необходимо поменять.

    Для этого третью обмотку подключают через конденсатор к резьбовой клемме второй обмотки статора.

    Бывает, что из-за длительной работы с течением времени появляется шум двигателя. Однако этот звук совсем иного рода по сравнению с гулом при неправильном подключении. Случается со временем и вибрация мотора. Иногда даже приходится с силой вращать ротор. Обычно это вызвано износом подшипников, из-за чего возникают слишком большие зазоры и появляется шум. Со временем это может привести к заклиниванию, а позже - к порче деталей двигателя.

    Лучше такого не допускать, иначе механизм придет в негодность. Проще заменить подшипники на новые. Тогда электродвигатель прослужит еще долгие годы.

    Рекомендуем почитать

    Наверх