Что является опасным в эл цепях. Анализ схем включения человека в электрическую цепь

Bluetooth 03.01.2022
Bluetooth

Знание процессов, протекающих в электроустановках, позволяет энергетикам безопасно эксплуатировать оборудование любого напряжения и вида тока, выполнять ремонтные работы и техническое обслуживание электрических систем.

Избежать случаев поражения током электроустановки помогает информация, излагаемая в , ПТБ и ПТЭ - основных документов, созданных лучшими специалистами на основе анализа несчастных случаев с людьми, пострадавшими от опасных факторов, сопровождающих работу электрической энергии.

Обстоятельства и причины попадания человека под действие электрического тока

Руководящие документы по безопасности выделяют три группы причин, объясняющих поражение работников электрическим током:

1. непреднамеренное, нечаянное приближение к токоведущим частям с напряжением на расстояние, меньшее безопасного или прикосновение к ним;

2. возникновение и развитие аварийных ситуаций;

3. нарушения требований, указанных в руководящих документах, предписывающих правила поведения работников в действующих электроустановках.

Оценка опасностей поражения человека заключается в определении расчетами величин токов, которые проходят через тело пострадавшего. При этом приходится учитывать много ситуаций, когда контакты могут возникнуть в случайных местах электроустановки. К тому же, приложенное к ним напряжение изменяется в зависимости от многих причин, включающих условия и режимы работы электрической схемы, ее энергетические характеристики.

Условия поражения человека током электроустановки

Чтобы через тело пострадавшего стал протекать ток, необходимо создать электрическую цепь подключением его минимум к двум точкам схемы, обладающей разностью потенциалов - напряжением. На электрическом оборудовании возможны проявления следующих условий:

1. одновременное двухфазное или двухполюсное прикосновение к различным полюсам (фазам);

2. однофазное или однополюсное прикосновение к потенциалу схемы, когда человек имеет непосредственную гальваническую связь с потенциалом земли;

3. случайное создание контакта с проводящими элементами электроустановки, которые оказались под напряжением в результате развития аварии;

4. попадание под действие напряжения шага, когда разность потенциалов создана между точками, на которых одновременно находятся ноги или другие части тела.

При этом может возникнуть электрический контакт пострадавшего с токоведущей частью электроустановки, который рассматривается ПУЭ как прикосновение:

1. прямое;

2. либо косвенное.

В первом случае он создается непосредственным контактом с токоведущей частью, включенной под напряжение, а во втором - при прикосновениях к не изолированным элементам схемы, когда на них прошел опасный потенциал в случае развития аварии.

Чтобы определить условия безопасной эксплуатации электроустановки и подготовить для работников внутри нее рабочее место, необходимо:

1. проанализировать случаи вероятного создания путей прохождения электрического тока через организм обслуживающего персонала;

2. сравнить его максимально возможную величину с действующими минимально допустимыми нормативами;

3. принять решение о выполнении мер обеспечения электрической безопасности.

Особенности анализа условий поражения людей в электроустановках

Для оценки величины тока, проходящего через тело пострадавшего в сети постоянного или переменного напряжения, используются следующие виды обозначений для:

1. сопротивлений:

    Rh - у тела человека;

    R0 - для устройства заземления;

Rиз- слоя изоляции относительно контура земли;

2. токов:

Ih - через тело человека;

Iз - замыкания на контур земли;

Uc - цепи постоянного либо однофазного переменного токов;

Uл - линейных;

Uф - фазных;

Uпр - прикосновения;

Uш - шага.

При этом возможны следующие типовые схемы подключения пострадавшего к цепям напряжения в сетях:

1. постоянного тока при:

    однополюсном касании контакта проводника с потенциалом, изолированным от контура земли;

    однополюсном касании потенциала схемы с заземлённым полюсом;

    двухполюсном контакте;

2. трехфазных сетей при;

    однофазном контакте с одним из потенциальных проводников (обобщенный случай);

    двухфазном контакте.

Схемы поражения в цепях постоянного тока

Однополюсный контакт человека с потенциалом, изолированным от земли

Под действием напряжения Uc по последовательно созданной цепочке из потенциала нижнего проводника, тела пострадавшего (рука-нога) и контур земли через удвоенное сопротивление изоляции среды протекает ток Ih.

Однополюсный контакт человека с заземленным потенциалом полюса


В этой схеме ситуацию усугубляет подключение к контуру земли одного потенциального провода с сопротивлением R0, близким к нулю и значительно меньшим, чем у тела пострадавшего и слоя изоляции внешней среды.

Сила искомого тока приблизительно равна отношению напряжения сети к сопротивлению человеческого тела.

Двухполюсный контакт человека с потенциалами сети


Напряжение сети напрямую прикладывается к телу пострадавшего, а ток через его организм ограничивается только его собственным незначительным сопротивлением.

Общие схемы поражения в цепях переменного трехфазного тока

Создание контакта человека между фазным потенциалом и землей

В общем случае между каждой фазой схемы и потенциалом земли имеется свое сопротивление и создается емкость. Нейтраль обмоток источника напряжения имеет обобщенное сопротивлением Zн, величина которого в разных системах заземления цепи меняется.


Формулы расчета проводимостей каждой цепочки и общей величины тока Ih через фазное напряжение Uф представлены на картинке формулами.

Образование контакта человека между двумя фазами

Наибольшую величину и опасность представляет ток, проходящий через цепочку, созданную между непосредственными контактами тела пострадавшего с фазными проводами. При этом часть тока может пройти по пути через землю и сопротивления изоляции среды.


Особенности двухфазного прикосновения

В цепях постоянного и трехфазного переменного токов создание контактов между двумя различными потенциалами наиболее опасно. При такой схеме человек попадает под действие наибольшего напряжения.

В схеме с источником питания постоянного напряжения величина тока через пострадавшего вычисляется по формуле Ih=Uc/Rh.

В трехфазной сети переменного тока это значение вычисляется по соотношению Ih=Uл/Rh=√3 Uф/Rh.

Считая, что среднее электрическое сопротивление тела человека составляет 1 килоом , рассчитаем ток, который возникает в сети постоянного и переменного напряжения 220 вольт.

В первом случае он составит: Ih=220/1000=0,22А. Этой величины в 220 мА достаточно для того, чтобы пострадавший подвергся судорожному сжатию мышц, когда без посторонней помощи он освободиться от воздействия случайного прикосновения уже не в состоянии - удерживающий ток.

Во втором случае Ih=(220· 1,732)/1000 =0,38А. При таком значении в 380 мА возникает смертельная опасность поражения.

Также обращаем внимание на то, что в сети переменного трехфазного напряжения положение нейтрали (может быть изолирована от земли или наоборот - подсоединена накоротко) очень мало влияет на величину тока Ih. Его основная доля идет не через цепочку земли, а между потенциалами фаз.

Если человек применил средства защиты, обеспечивающие его надежную изоляцию от контура земли, то они в подобной ситуации окажутся бесполезными и не помогут.

Особенности однофазного прикосновения

Трехфазная сеть с глухо заземленной нейтралью

Пострадавший прикасается к одному из фазных проводов и попадает под разность потенциалов между ним и контуром земли. Такие случаи происходят чаще всего.


Хотя напряжение фазы относительно земли меньше чем линейное в 1,732 раза, такой случай остается опасным. Ухудшить состояние пострадавшего может:

    режим нейтрали и качество ее подключения;

    электрические сопротивления диэлектрического слоя проводов относительно потенциала земли;

    вид обуви и ее диэлектрические свойства;

    сопротивление грунта в месте нахождения пострадавшего;

    другие сопутствующие факторы.

Значение тока Ih в этом случае можно определить по соотношению:

Ih=Uф/(Rh+Rоб+Rп+R0).

Напомним, что сопротивления: человеческого тела Rh, обуви Rоб, пола Rп и заземления у нейтрали R0, принимаются в Омах.

Чем меньше величина знаменателя, тем сильнее создается ток. Если работник носит токопроводящую обувь, например, промочил ноги или подошвы подбиты металлическими гвоздями, и вдобавок находится на металлическом полу или сырой земле, то можно считать, что Rоб=Rп=0. Так обеспечивается самый неблагоприятный случай для жизни пострадавшего.

Ih=Uф/(Rh+R0).

При фазном напряжении в 220 вольт получим Ih=220/1000=0,22 А. Или ток смертельной опасности 220 мА.

Теперь рассчитаем вариант, когда работник использует средства защиты: диэлектрическую обувь (Rоб=45 кОм) и изолирующее основание (Rп=100 кОм).

Ih=220/(1000 +45000+10000)=0,0015 А.

Получили безопасную величину тока 1,5мА.

Трехфазная сеть с изолированной нейтралью

Здесь отсутствует прямая гальваническая связь нейтрали источника тока с потенциалом земли. Фазное напряжение приложено к сопротивлению слоя изоляции Rиз, обладающей очень высокой величиной, которая контролируется при эксплуатации и постоянно поддерживается в исправном состоянии.


Цепь протекания тока через тело человека зависит от этой величины в каждой из фаз. Если учесть все слои сопротивления току, то его величину можно просчитать по формуле: Ih=Uф/(Rh+Rоб+Rп+(Rиз/3)).

Во время самого неблагоприятного случая, когда созданы условия максимальной проводимости через обувь и пол, выражение примет вид: Ih=Uф/(Rh+(Rиз/3)).

Если рассматривать сеть 220 вольт с изоляцией слоя в 90 кОм, то получим: Ih=220/(1000+(90000/3)) =0,007 А. Такой ток в 7 мА будет хорошо ощущаться, но смертельную травму обеспечить не сможет.

Обратим внимание, что мы в рассматриваемом примере умышленно упустили сопротивление грунта и обуви. Если их учесть, то ток снизится до безопасной величины, порядка 0,0012 А или 1,2 мА.

Выводы:

1. в схемах с изолированной нейтралью безопасность работников обеспечить проще. Она напрямую зависит от качества диэлектрического слоя проводов;

2. при одинаковых обстоятельствах прикосновения к потенциалу одной фазы схема с заземленной нейтралью представляет наибольшую опасность, чем с изолированной.

Рассмотрим случай касания металлического корпуса электрического прибора, если внутри него пробита изоляция диэлектрического слоя у потенциала фазы. Когда человек прикоснется к этому корпусу, то через его тело пойдет ток на землю и далее через нейтраль к источнику напряжения.

Схема замещения показана на картинке ниже. Сопротивлением Rн обладает создаваемая прибором нагрузка.


Сопротивление изоляции Rиз совместно с R0 и Rh ограничивает ток междуфазного прикосновения. Он выражается соотношением: Ih=Uф/(Rh+Rиз+Rо).

При этом, как правило, еще на стадии проекта, выбирая материалы для случая, когда R0=0 стараются соблюдать условие: Rиз>(Uф/Ihg) -Rh.

Величина Ihg называется порогом неощутимого тока, значение которого человек не будет чувствовать.

Делаем вывод: сопротивление диэлектрического слоя всех токоведущих частей относительно контура земли определяет степень безопасности электроустановки.

По этой причине все подобные сопротивления нормированы и учтены утвержденными таблицами. С этой же целью нормируют не сами сопротивления изоляции, а токи утечек, которые через них протекают при испытаниях.

Напряжение шага

В электроустановках по разным причинам может возникнуть авария, когда потенциал фазы непосредственно касается контура земли. Если на воздушной ЛЭП один из проводов под действием различного типа механических нагрузок оборвался, то как раз в этом случае и проявляется подобная ситуация.


При этом в месте контакта провода с землей образуется ток, который создает вокруг точки касания зону растекания - площадку, на поверхности которой появляется электрический потенциал. Его величина зависит от тока замыкания Iз и удельного состояния почвы r.


Человек, оказавшийся в границах этой зоны, попадает под действие напряжения шага Uш, как показано на левой половинке картинки. Площадь зоны растекания ограничивается контуром, где потенциал отсутствует.

Значение напряжения шага рассчитывается по формуле: Uш=Uз∙β1∙β2.

В ней учитывается напряжение фазы в месте растекания тока - Uз, которое уточняется коэффициентами характеристик растекания напряжения β1 и влияния сопротивлений обуви и ног β2. Величины β1 и β2 публикуются в справочниках.

Значение тока сквозь тело пострадавшего вычисляется выражением: Ih=(Uз∙β1∙β2)/ Rh.

На правой части рисунка в положении 2 пострадавший создает контакт с замкнувшим на землю потенциалом провода. Он оказывается под влиянием разности потенциалов между точкой касания рукой и контуром земли, которая выражается напряжением прикосновения Uпр.

В этой ситуации ток вычисляют по выражению: Ih=(Uф.з.∙α )/ Rh

Значения коэффициента растекания α могут меняться в пределах 0÷1 и учитывают характеристики, влияющие на Uпр.

В рассмотренной ситуации действуют те же выводы, что и при создании однофазного контакта пострадавшим в нормальном режиме эксплуатации электроустановки.

Если же человек расположен за пределами зоны растекания тока, то он находится в безопасной зоне.

Анализ опасности поражения электрическим током в различных сетях

Поражение человека электротоком возможно лишь при его непосредственном контакте с точками электроустановки, между которыми существует напряжение, или с точкой, потенциал которой отличается от потенциала земли. Анализ опасности такого прикосновения, оцениваемой величиной проходящего через человека тока или напряжением прикосновения, зависит от ряда факторов: схемы включения человека в электросеть, ее напряжения, режима нейтрали, изоляции токоведущих частей, их емкостной составляющей и т. п.


При изучении причин поражения током необходимо различать прямой контакт с токоведущими частями электроустановок и косвенный. Первый, как правило, возникает при грубейших нарушениях правил эксплуатации электроустановок (ПТЭ и ПТБ), второй - в результате аварийных ситуаций, например при пробое изоляции.


Схемы включения человека в электрическую цепь могут быть различными. Однако наиболее распространенными являются две: между двумя различными проводами - двухфазное включение и между одним проводом или корпусом электроустановки, одна фаза которой пробита, и землей - однофазное включение.


Статистика показывает, что наибольшее число электротравм происходит при однофазном включении, причем большинство из них - в сетях напряжением 380/220 В. Двухфазное включение является более опасным, поскольку в данном случае человек находится под линейным напряжением, при этом сила тока, проходящего через человека, составит (в А)


где Uл - линейное напряжение, т.е. напряжение между фазными проводами, В; Uф - фазное напряжение, т.е. напряжение между началом и концом одной обмотки (или между фазным и нулевым проводом), В.


Как видно из рис. 8.1, опасность двухфазного включения не зависит от режима нейтрали. Нейтралью называется точка соединения обмоток трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная к нему через аппараты с большим сопротивлением (сеть с изолированной нейтралью), либо непосредственно соединенная с заземляющим устройством - сеть с глухозаземленной нейтралью.


При двухфазном включении ток, проходящий через тело человека, не уменьшится при изолировании человека от земли с использованием диэлектрических галош, бот, ковриков, полов.


При однофазном же включении человека в сеть сила тока во многом определяется режимом нейтрали. Для рассматриваемого случая сила тока, проходящего через человека, составит (в А)



, (8.3)

где w - частота; С - емкость фаз относительно земли


Рис. 8.1. Включение человека в трехфазную сеть с изолированной нейтралью:
а - двухфазное включение; б - однофазное включение; Ra, Rt, Rc - электросопротивление изоляции фаз относительно земли. Ом; Са, Сb, Сс - емкость проводов относительно земли, Ф, Ia, Ib, IС токи, стекающие на землю через сопротивление изоляции фаз (токи утечки)


Для упрощения формулы принято, что Ra = Rb = Rc = Rиз, а Са = Cb = Cc = С.


В производственных условиях изоляция фаз, изготовленная из диэлектрических материалов и имеющая конечную величину, в процессе старения, увлажнения, покрытия пылью изменяется у каждой фазы неодинаково. Поэтому расчет безопасных условий, который в значительной степени осложняется, необходимо вести с учетом реальных значений сопротивления R и емкостей С для каждой фазы. Если емкость фаз относительно земли мала, т. е. Са = Cb = Сс = 0 (например, в воздушных сетях небольшой протяженности), то


Iч = Uф/(Rч+Rиз/3), (8.4)


Если же емкость велика (Са = Сь = Сс не равно 0) и Rиз велико (например, в кабельных линиях), то сила тока, протекающего через тело человека, будет определяться только емкостной составляющей:


, (8.5)

где Хс = 1/wС- емкостное сопротивление, Ом.


Из приведенных выражений видно, что в сетях с изолированной нейтралью опасность поражения человека током тем меньше, чем меньше емкостная и выше активная составляющая фазных проводов относительно земли. Поэтому в таких сетях весьма важно постоянно контролировать Rиз для выявления и устранения повреждений.


Рис. 8.2. Включение человека в трехфазную сеть с изолированной нейтралью при аварийном режиме. Пояснения в тексте


Если емкостная составляющая велика, то высокое сопротивление изоляции фаз не обеспечивает необходимой защиты.


В случае аварийной ситуации (рис. 8.2), при замыкании одной из фаз на землю, сила тока, проходящего через человека, будет равна (в А)


Если принять, что Rзм = 0 или Rзм << Rч (что бывает в реальных аварийных условиях), то, исходя из приведенного выражения, человек окажется под линейным напряжением, т. е. попадет под двухфазное включение. Однако чаще всего R3M не равно 0, поэтому человек будет находиться под напряжением, меньшим Uл, но большим Uф, при условии, что Rиз/3 >> Rзм.


Замыкание на землю существенным образом изменяет и напряжение токоведущих частей электроустановки относительно земли и заземленных конструкций здания. Замыкание на землю всегда сопровождается растеканием тока в грунте, что, в свою очередь, приводит к возникновению нового вида поражения человека, а именно попадание под напряжение прикосновения и напряжение шага. Такое замыкание может быть случайным или преднамеренным. В последнем случае проводник, находящийся в контакте с землей, называется заземлителем или электродом.


В объеме земли, где проходит ток, возникает так называемое """поле (зона) растекания тока". Теоретически оно простирается до бесконечности, однако в реальных условиях уже на расстоянии 20 м от заземлителя плотность тока растекания и потенциал практически равны нулю.


Характер потенциальной кривой растекания существенным образом зависит от формы заземлителя. Так, для одиночного полусферического заземлителя потенциал на поверхности земли будет изменяться по гиперболическому закону (рис. 8.3).


Рис. 8.3. Распределение потенциала на поверхности земли вокруг полушарового заземлителя (ф - изменение потенциала заземлителя на поверхности земли; фз -максимальный потенциал заземлителя при силе тока замыкания на землю I3; r - радиус заземлителя)


Рис. 8.4. Напряжение прикосновения при одиночном заземлителе (ф3 - суммарное сопротивление грунта растеканию тока от заземлителя):
1 - потенциальная кривая; 2 - кривая, характеризующая изменение Uпр по мере удаления от заземлителя; 3 - пробой фазы на корпус


В зависимости от места нахождения человека в зоне растекания и его контакта с электроустановкой б, корпус которой заземлен и находится под напряжением, человек может попасть под напряжение прикосновения Uпр (рис. 8.4), определяемое как разность потенциалов между точкой электроустановки, которой касается человек ф3, и точкой грунта, на которой он стоит - фосн (в В)


Uпр = ф3 - фосн = ф3 (1 - фосн/ф3), (8.7)


где выражение (1 - фосн/ф3) = а1 представляет собой коэффициент напряжения прикосновения, характеризующий форму потенциальной кривой.


Из рис. 8.4 видно, что напряжение прикосновения будет максимальным при удалении человека от заземлителя на 20 м и более (электроустановка в) и численно равно потенциалу заземлителя Uпр = ф3, при этом а1 = I. Если же человек стоит непосредственно над заземлителем (электроустановка а), то Unp = 0 и а1 =0. Это самый безопасный случай.


Выражение (8.7) позволяет вычислить Unp без учета дополнительных сопротивлений в цепи человек - земля, т. е. без учета сопротивления обуви, сопротивления опорной поверхности ног и сопротивления пола. Все это учитывается коэффициентом а2, поэтому в реальных условиях величина напряжения прикосновения будет еще меньше.

Включение человека в электрическую сеть может быть однофазным и двухфазным. Однофазное включение представляет собой подключение человека между одной из фаз сети и землей. Сила поражающего тока в этом случае зависит от режима нейт­рали сети, сопротивлений человека, обуви, пола, изоляции фаз относительно земли. Однофазное включение возникает значитель­но чаще и часто служит причиной электрических травм в сетях любого напряжения. При двухфазном включении человек прикасается к двум фа­зам электрической сети. При двухфазном включении сила тока, протекающего через тело (поражающий ток), зависит лишь от напряжения сети и сопротивления тела человека и не зависит от режима нейтрали питающего трансформатора сети. Электрические сети делят на однофазные и трехфазные. Однофазная сеть может быть изолирована от земли или иметь заземленный провод. На рис. 1 изображены возможные варианты подключения человека к однофазным сетям.

Таким образом, если человек прикоснется к одной из фаз трех­фазной четырехпроводной сети с глухозаземленной нейтралью, то он окажется практически под фазным напряжением (R3≤ RЧ) и сила тока, проходящего через человека при нормальной работе сети, практически не изменится с изменением сопротивления изо­ляции и емкости проводов отно­сительно земли.

Воздействие электрического тока на организм человека

Проходя через организм, электрический ток оказывает термическое, электролитическое и биологическое действие.

Термическое действие проявляется в ожогах кожного покрова или внутренних органов.

При электролитической действия вследствие прохождения тока происходит разложение (электролиз) крови и другой органической жидкости, сопровождающееся разрушением эритроцитов и нарушением обмена веществ.

Биологическое действие выражается в раздражении и возбуждении живых тканей организма, что сопровождается самопроизвольным судорожным сокращением мышц, в том числе сердца и легких.

Различают два основных вида поражения электрическим током:



§ электрические травмы,

§ электрические удары.

Электрические удары могут быть условно разделены на четыре степени:

1. судорожные сокращения мышц без потери сознания;

2. с потерей сознания, но с сохранением дыхания и работы сердца;

3. потеря сознания и нарушение сердечной деятельности или дыхания (или того и другого вместе);

4. клиническая смерть, т.е. отсутствие дыхания и кровообращения.

Клиническая смерть - это переходный период между жизнью и смертью, начинается с момента остановки деятельности сердца и легких. Человек, находящийся в состоянии клинической смерти, не проявляет никаких признаков жизни: у нее отсутствуют дыхание, сердцебиение, реакции на болевые ощущения; зрачки глаз расширены и не реагируют на свет. Однако следует помнить, что в этом случае организм еще можно оживить, если правильно и своевременно подать ему помощь. Продолжительность клинической смерти может составлять 5-8 мин. Если помощь не будет подана своевременно, то наступает биологическая (истинная) смерть.

Результат поражения человека электрическим током зависит от многих факторов. Важнейшими из них являются величина и продолжительность действия тока, род и частота тока и индивидуальные свойства организм


Определение сопротивления растекания тока одиночных заземлителей и порядок расчета защитного контура заземления для стационарного технологического оборудования (ГОСТ 12.1.030-81. CCБТ. Защитное заземление, зануление)

Выполнение заземляющих устройств. Различают заземлители искусственные, предназначенные исключительно для целей заземления, и естественные – сторонние проводящие части, находящиеся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемые для целей заземления.

Для искусственных заземлителей применяют обычно вертикальные и горизонтальные электроды.

В качестве естественных заземлителей могут использоваться: проложенные в земле водопроводные и другие металлические трубы (за исключением трубопроводов горючих жидкостей, горючих или взрывоопасных газов); обсадные трубы артезианских колодцев, скважин, шурфов и т. п.; металлические и железобетонные конструкции зданий и сооружений, имеющие соединения с землей; свинцовые оболочки кабелей, проложенных в земле; металлические шпунты гидротехнических сооружений и т. п.

Расчет защитного заземления имеет целью определить основные параметры заземления – число, размеры и порядок размещения одиночных заземлителей и заземляющих проводников, при которых напряжения прикосновения и шага в период замыкания фазы на заземленный корпус не превышают допустимых значений.

Для расчета заземления необходимы следующие сведения:

1) характеристика электроустановки - тип установки, виды основного оборудования, рабочие напряжения, способы заземления нейтралей трансформаторов и генераторов и т. п.;

2) план электроустановки с указанием основных размеров и размещения оборудования;

3) формы и размеры электродов, из которых предусмотрено соорудить проектируемый групповой заземлитель, а также предполагаемая глубина погружения их в землю;

4) данные измерений удельного сопротивления грунта на участке, где должен быть сооружен заземлитель, и сведения о погодных (климатических) условиях, при которых производились эти измерения, а также характеристика климатической зоны. Если земля принимается двухслойной, то необходимо иметь данные измерений удельного сопротивления обоих слоев земли и толщина верхнего слоя;

5) данные о естественных заземлителях: какие сооружения могут быть использованы для этой цели и сопротивления их растеканию тока, полученные непосредственным измерением. Если по каким-либо причинам измерить сопротивление естественного заземлителя невозможно, то должны быть представлены сведения, позволяющие определить это сопротивление расчетным путем;

6) расчетный ток замыкания на землю. Если ток неизвестен, то его вычисляют обычными способами;

7) расчетные значения допустимых напряжений прикосновения (и шага) и время действия защиты, в случае если расчет производится по напряжениям прикосновения (и шага).

Расчет заземления производится обычно для случаев размещения заземлителя в однородной земле. В последние годы разработаны и начали применяться инженерные способы расчета заземлителей в многослойном грунте.

При расчете заземлителей в однородной земле учитывается, сопротивление верхнего слоя земли (слоя сезонных изменений), обусловленное промерзанием или высыханием грунта. Расчет производят способом, основанным на применении коэффициентов использования проводимости заземлителя и называемым поэтому способом коэффициентов использования. Его выполняют как при простых, так и при сложных конструкциях групповых заземлителей.

При расчете заземлителей в многослойной земле обычно принимают двухслойную модель земли с удельными сопротивлениями верхнего и нижнего слоев r1, и r2 соответственно и толщиной (мощностью) верхнего слоя h1. Расчет производится способом, основанным на учете потенциалов, наведенных на электроды, входящие в состав группового заземлителя, и называемым поэтому способом наведенных потенциалов. Расчет заземлителей в многослойной земле более трудоемкий. Вместе с тем он дает более точные результаты. Его целесообразно применять при сложных конструкциях групповых заземлителей, которые обычно имеют место в электроустановках с эффективно заземленной нейтралью, т. е. в установках напряжением 110 кВ и выше.

При расчете заземляющего устройства любым способом необходимо определить для него требуемое сопротивление.

Определение требуемого сопротивления заземляющего устройства производят в соответствии с ПУЭ.

Для установок напряжением до 1 кВ сопротивление заземляющего устройства, используемого для защитного заземления открытых проводящих частей в системе типа IT должно соответствовать условию:

где Rз - сопротивление заземляющего устройства, ом; Uпр.доп – напряжение прикосновения, значение которого принимается равным 50 в; Iз – полный ток замыкания на землю, А.

Как правило, не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом. Допускается сопротивление заземляющего устройства до 10 Ом, если соблюдено приведенное выше условие, а мощность трансформаторов и генераторов, питающих сеть, не превышает 100 кВА, в том числе суммарная мощность трансформаторов и (или) генераторов, работающих параллельно.

Для установок напряжением выше 1 кВ выше 1 кВ сопротивление заземляющего устройства должно соответствовать:

0,5 Ом при эффективно заземленной нейтрали (т. е. при больших токах замыкания на землю);

250/Iз, но не более 10 Ом при изолированной нейтрали (т. е. при малых токах замыкания на землю) и условии, что заземлитель используется только для электроустановок напряжением выше 1000 В.

В этих выражениях Iз - расчетный ток замыкания на землю.

В процессе эксплуатации может произойти повышение сопротивления растеканию тока заземлителя сверх расчетного значения, поэтому необходимо периодически контролировать значение сопротивления заземлителя.

Контур заземления

Контур заземления классически представляет собой группу соединенных горизонтальным проводником вертикальных электродов небольшой глубины, смонтированных около объекта на относительно небольшом взаимном расстоянии друг от друга.

В качестве заземляющих электродов в таком заземляющем устройстве традиционно использовали стальной уголок либо арматура длинами 3 метра, которые забивали в грунт с помощью кувалды.

В качестве соединительного проводника использовали стальную полосу 4х40 мм, которая укладывалась в заранее подготовленную канаву глубиной 0,5 - 0,7 метра. Проводник присоединялся к смонтированным заземлителям электро- или газосваркой.

Контур заземления для экономии места обычно «сворачивают» вокруг здания вдоль стен (по периметру). Если взглянуть на этот заземлитель сверху, можно сказать, что электроды смонтированы по контуру здания (отсюда и название).

Таким образом контур заземления - это заземлитель, состоящий из нескольких электродов (группы электродов), соединенных друг с другом и смонтированных вокруг здания по его контуру.

Случаи поражения человека током возможны лишь при замыкании электрической цепи через тело человека или, иначе говоря, при прикосновении человека не менее чем к двум точкам цепи, между которыми существует некоторое напряжение.

Опасность такого прикосновения, оцениваемая величиной тока, проходящего через тело человека, или же напряжением прикосновения, зависит от ряда факторов: схемы включения человека в цепь, напряжения сети, схемы самой сети, режима ее нейтрали, степени изоляции токоведущих частей от земли, а также от величины емкости токоведущих частей относительно земли и т. п.

Схемы включения человека в цепь могут быть различными. Однако наиболее характерными являются две схемы включения: между двумя проводами и между одним проводом и землей (рис. 68). Разумеется, во втором случае предполагается наличие электрической связи между сетью и землей.

Применительно к сетям переменного тока первую схему обычно называют двухфазным включением, а вторую — однофазным.

Двухфазное включение, т. е. прикосновение человека одновременно к двум фазам, как правило, более опасно, поскольку к телу человека прикладывается наибольшее в данной сети напряжение — линейное, и поэтому через человека пойдет больший ток:

где Ih — ток, проходящий через тело человека, А; UЛ = √3 Uф — линейное напряжение, т. е. напряжение между фазными проводами сети, В; Uф — фазное напряжение, т. е. напряжение между началом и концом одной обмотки (или между фазным и нулевым проводами), В.


Рис. 68. Случаи включения человека в цепь тока:
а — двухфазное включение; б, в — однофазные включения

Нетрудно представить, что двухфазное включение является одинаково опасным в сети как с изолированной, так и с заземленной нейтралями.

При двухфазном включении опасность поражения не уменьшится и в том случае, если человек надежно изолирован от земли, т. е. если он имеет на ногах резиновые галоши или боты либо стоит на изолирующем (деревянном) полу, или на диэлектрическом коврике.

Однофазное включение происходит значительно чаще, но является менее опасным, чем двухфазное включение, поскольку напряжение, под которым оказывается человек, не превышает фазного, т. е. меньше линейного в 1,73 раза. Соответственно меньше оказывается ток, проходящий через человека.

Кроме того, на величину этого тока влияют также режим нейтрали источника тока, сопротивление изоляции и емкость проводов относительно земли, сопротивление пола, на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

В трехфазной трехпроводной сети с изолированной нейтралью ток, проходящий через человека, при прикосновении к одной из фаз сети в период ее нормальной работы (рис. 69, а) определяется следующим выражением в комплексной форме (А):

где Z — комплекс полного сопротивления одной фазы относительно земли (Ом):

здесь r и С — соответственно сопротивление изоляции провода (Ом) и емкость провода (Ф) относительно земли (приняты для упрощения одинаковыми для всех проводов сети).


Рис. 69. Прикосновение человека к проводу трехфазной трехпроводной сети с изолированной нейтралью: а — при нормальном режиме; б — при аварийном режиме

Ток в действительной форме равен (А):

, (35)

Если емкость проводов относительно земли мала, т. е. С = 0, что обычно имеет место в воздушных сетях небольшой протяженности, то уравнение (35) примет вид

, (36)

Если же емкость велика, а проводимость изоляции незначительна, т. е. r ≈ ∞, что обычно имеет место в кабельных сетях, то согласно выражению (35) ток через человека (А) будет:

, (37)

где хс = 1/wC — емкостное сопротивление, Ом.

Из выражения (36) следует, что в сетях с изолированной нейтралью, обладающих незначительной емкостью между проводами и землей, опасность для человека, прикоснувшегося к одной из фаз в период нормальной работы сети, зависит от сопротивления проводов относительно земли: с увеличением сопротивления опасность уменьшается.

Поэтому очень важно в таких сетях обеспечивать высокое сопротивление изоляции и контролировать ее состояние в целях своевременного выявления и устранения возникших неисправностей.

Однако в сетях с большой емкостью относительно земли роль изоляции проводов в обеспечении безопасности прикосновения утрачивается, что видно из уравнений (35) и (37).

При аварийном режиме работы сети, т. е. когда возникло замыкание одной из фаз на землю через малое сопротивление гзм ток через человека, прикоснувшегося к здоровой фазе (рис. 69, б), будет (А):

, (38)

а напряжение прикосновения (В):

, (39)

Если принять, что rзм = 0 или по крайней мере считать, что гзм < Rh (так обычно бывает на практике), то согласно выражению (39)

, (40)

т. е. человек окажется под линейным напряжением.

В действительных условиях гзм > 0, поэтому напряжение, под которым окажется человек, прикоснувшийся в аварийный период к исправной фазе трехфазной сети с изолированной нейтралью, будет значительно больше фазного и несколько меньше линейного напряжения сети. Таким образом, этот случай прикосновения во много раз опаснее прикосновения к той же фазе сети при нормальном режиме

работы [см. уравнения (36) и (39), имея в виду, что r/3>rзм].

В трехфазной четырехпроводной сети с заземленной нейтралью проводимость изоляции и емкостная проводимость проводов относительно земли малы по сравнению с проводимостью заземления нейтрали, поэтому при определении тока через человека, касающегося фазы сети, ими можно пренебречь.

При нормальном режиме работы сети ток через человека будет (рис. 70, а):

, (41)

где г0 — сопротивление заземления нейтрали, Ом.


Рис. 70. Прикосновение человека к фазному проводу трехфазной четырехпроводной сети с заземленной нейтралью:
а — при нормальном режиме; б — при аварийном режиме

В обычных сетях r0 < 10 Ом, сопротивление тела человека Rh не опускается ниже нескольких сотен Ом. Следовательно, без большой ошибки в уравнении (41) можно пренебречь значением г0 и считать, что при прикосновении к одной из фаз трехфазной четырехпроводной сети с заземленной нейтралью человек оказывается практически под фазным напряжением Uф, а ток, проходящий через него, равен частному от деления Uф на Rh

Отсюда следует, что прикосновение к фазе трехфазной сети с заземленной нейтралью в период нормальной ее работы более опасно, чем прикосновение к фазе нормально работающей сети с изолированной нейтралью [ср. уравнения (36) и (41)], но менее опасно прикосновения к неповрежденной фазе сети с изолированной нейтралью в аварийный период [ср. уравнения (38) и (41)], так как rзм может в ряде случаев мало отличаться от г0.

Существуют различные схемы включения человека в электрическую цепь тока:

Однофазное прикосновение – прикосновение к проводнику одной фазы действующей электроустановки;

Двухфазное прикосновение – одновременное прикосновение к проводникам двух фаз действующей электроустановки;

Прикосновение к нетоковедущим частям электроустановок, оказавшихся под напряжением в результате повреждения изоляции;

Включение под напряжение шага – включение между двумя точками земли (грунта), находящимися под разными потенциалами.

Рассмотрим наиболее характерные схемы включения человека в электрическую цепь тока.

Однофазное прикосновение в сети с глухозаземленной нейтралью. Ток, протекающий через тело человека (I h ) при однофазном прикосновении (рис. 6) замкнется по цепи: фаза L 3 – тело человека - основание (пол) – заземлитель нейтрали – нейтраль (нулевая точка).

Рис. 6. Схема однофазного прикосновения в сети

с глухозаземленной нейтралью

По закону Ома: ,

Где R о – сопротивление заземления нейтрали,

R осн - сопротивление основания.

Если основание (пол) токопроводящее, то R осн ≈ 0

Учитывая то, что R о « R h , то

U h = U ф

Такое прикосновение крайне опасно.

Однофазное прикосновение в сети с изолированной нейтралью. Ток, протекающий через тело человека (рис. 7) замкнется по цепям: фаза L 3 – тело человека – пол и далее возращается в сеть через изоляции фаз L 2 и L 1 , т.е. далее ток следует по цепям: изоляция фазы L 2 - фаза L 2 - нейтраль (нулевая точка) и изоляция фазы L 1 - фаза L 1 – нейтраль (нулевая точка). Таким образом, в цепи тока, протекающего через тело человека, последовательно с ним оказываются включенными изоляции фаз L 2 и L 1 .

Рис. 7. Схема однофазного прикосновение в сети

с изолированной нейтралью

Сопротивление изоляции фазы Z имеет активную (R ) и емкостную составляющие (С ).

R – характеризует неидеальность изоляции, т.е. способность изоляции проводить ток, хотя и значительно хуже, чем металлы;

С – емкость фазы относительно земли определяется геометрическими размерами воображаемого конденсатора, «пластинками» которого являются фазы и земли.

При R 1 = R 2 = R 3 = R ф и С 1 = С 2 = С 3 = С Ф ток, протекающий через тело человека:

где Z - полное сопротивление изоляции фазного провода относительно земли.

Если емкость фаз пренебречь С ф = 0 (воздушные сети небольшой протяженности), то:

откуда следует, что величина тока зависит не только от сопротивления человека, но также от сопротивления изоляции фазного провода относительно земли.

Если, например, R 1 = R 2 = R 3 = 3000 Ом, то


; U h = 0,0111000 = 110 В

Двухфазное прикосновение. При двухфазном прикосновении (рис. 8) независимо от режима нейтрали человек окажется под линейным напряжением сети U л и по закону Ома:

при U л =380 В: I = 380/1000 = 0,38 А = 380 мА.

Рис. 8. Схема двухфазного прикосновения человека

Двухфазное прикосновение крайне опасно, такие случаи сравнительно редки и являются, как правило, результатом работы под напряжением в электроустановках до 1000 В, что является нарушением правил и инструкции.

Прикосновение к металлическому корпусу, оказавшемуся под напряжением. Прикосновение к корпусу электроустановки (рис. 9), в которой фаза (L 3) замкнулась на корпус, равносильно прикосновению к самой фазе. Поэтому анализ и выводы для случаев однофазного прикосновения, рассмотренные ранее, полностью применяются для случая замыкания на корпус.

Рис. 9. Схема прикосновения человека к металлическому

корпусу, оказавшемуся под напряжением

Рекомендуем почитать

Наверх