Как проверить семисегментный светодиодный индикатор. Большие цифровые индикаторы из светодиодов

Настройка WI-FI 07.11.2019
Настройка WI-FI

Наверняка вы уже видели индикаторы - "восьмёрки". Это и есть семисегментный светодиодный индикатор, который служит для отображения цифр от 0 до 9, а также децимальной точки (DP - Decimal point) или запятой.

Конструктивно такое изделие представляет собой сборку светодиодов. Каждый светодиод сборки засвечивает свой знакосегмент.

В зависимости от модели сборка может состоять из 1 - 4 семисегментных групп. Например, индикатор АЛС333Б1 состоит из одной семисегментной группы, которая способна отображать всего лишь одну цифру от 0 до 9.

А вот светодиодный индикатор KEM-5162AS уже имеет две семисегментных группы. Он является двухразрядным. Далее на фото показаны разные светодиодные семисегментные индикаторы.

Также существуют индикаторы с 4-мя семисегментными группами - четырёхразрядные (на фото - FYQ-5641BSR-11). Их можно использовать в самодельных электронных часах.

Как обозначаются семисегментные индикаторы на схемах?

Так как семисегментный индикатор - это комбинированный электронный прибор, то изображение его на схемах мало отличается от его внешнего вида.

Стоит только обратить внимание на то, что каждому выводу соответствует конкретный знакосегмент, к которому он подключен. Также имеется один или несколько выводов общего катода или анода - в зависимости от модели прибора.

Особенности семисегментных индикаторов.

Несмотря на кажущуюся простоту этой детали и у неё есть особенности.

Во-первых, светодиодные семисегментные индикаторы бывают с общим анодом и с общим катодом. Данную особенность следует учитывать при его покупке для самодельной конструкции или прибора.

Вот, например, цоколёвка уже знакомого нам 4-ёх разрядного индикатора FYQ-5641BSR-11 .

Как видим, аноды у светодиодов каждой цифры объединены и выведены на отдельный вывод. Катоды же у светодиодов, которые принадлежат к знакосегменту (например, G ), соединены вместе. От того, какую схему соединений имеет индикатор (с общим анодом или катодом) зависит очень многое. Если взглянуть на принципиальные схемы приборов с применением семисегментных индикаторов, то станет ясно, почему это так важно.

Кроме небольших индикаторов есть большие и даже очень большие. Их можно увидеть в общественных местах, обычно в виде настенных часов, термометров, информеров.

Чтобы увеличить размеры цифр на табло и одновременно сохранить достаточную яркость каждого сегмента, используется несколько светодиодов, включенных последовательно. Вот пример такого индикатора - он умещается на ладони. Это FYS-23011-BUB-21 .

Один его сегмент состоит из 4 светодиодов, включенных последовательно.

Чтобы засветить один из сегментов (A, B, C, D, E, F или G), нужно подать на него напряжение в 11,2 вольта (2,8V на каждый светодиод). Можно и меньше, например, 10V, но яркость тоже уменьшится. Исключение составляет децимальная точка (DP), её сегмент состоит из двух светодиодов. Для неё нужно всего 5 - 5,6 вольт.

Также в природе встречаются двухцветные индикаторы. В них встраиваются, например, красные и зелёные светодиоды. Получается, что в корпус встроено как бы два индикатора, но со светодиодами разного цвета свечения. Если подать напряжение на обе цепи светодиодов, то можно получить жёлтый цвет свечения сегментов. Вот схема соединений одного из таких двухцветных индикаторов (SBA-15-11EGWA).

Если коммутировать выводы 1 (RED ) и 5 (GREEN ) на "+" питания через ключевые транзисторы, то можно менять цвет свечения отображаемых чисел с красного на зелёный. А если же одновременно подключить выводы 1 и 5, то цвет cвечения будет оранжевым. Вот так можно баловаться с индикаторами .

Управление семисегментными индикаторами.

Для управления семисегментными индикаторами в цифровых устройствах используют регистры сдвига и дешифраторы. Например, широко распространённый дешифратор для управления индикаторами серии АЛС333 и АЛС324 - микросхема К514ИД2 или К176ИД2 . Вот пример .

А для управления современными импортными индикаторами обычно используются регистры сдвига 74HC595 . По идее, управлять сегментами табло можно и напрямую с выходов микроконтроллера. Но такую схему используют редко, так как для этого требуется задействовать довольно много выводов самого микроконтроллера. Поэтому для этой цели применяются регистры сдвига. Кроме этого, ток, потребляемый светодиодами знакосегмента, может быть больше, чем ток, который может обеспечить рядовой выход микроконтроллера.

Для управления большими семисегментными индикаторами, такими как, FYS-23011-BUB-21 применяются специализированные драйверы, например, микросхема MBI5026 .

Что внутри семисегментного индикатора?

Ну и немного вкусненького. Любой электронщик не был бы таковым, если бы не интересовался "внутренностями" радиодеталей. Вот что внутри индикатора АЛС324Б1.

Чёрные квадратики на основании - это кристаллы светодиодов. Тут же можно разглядеть золотые перемычки, которые соединяют кристалл с одним из выводов. К сожалению, этот индикатор уже работать не будет, так как были оборваны как раз эти самые перемычки . Но зато мы можем посмотреть, что скрывается за декоративной панелькой табло.


Схема подключения одноразрядного семисегментного индикатора
Схема подключения многоразрядного семисегментного индикатора

Устройство отображения цифровой информации. Это - наиболее простая реализация индикатора, который может отображать арабские цифры. Для отображения букв используются более сложные многосегментные и матричные индикаторы.

Как говорит его название, состоит из семи элементов индикации (сегментов), включающихся и выключающихся по отдельности. Включая их в разных комбинациях, из них можно составить упрощённые изображения арабских цифр.
Сегменты обозначаются буквами от A до G; восьмой сегмент - десятичная точка (decimal point, DP), предназначенная для отображения дробных чисел.
Изредка на семисегментном индикаторе отображают буквы.

Бывают разных цветов, обычно это белый, красный, зеленый, желтый и голубой цвета. Кроме того, они могут быть разных размеров.

Также, светодиодный индикатор может быть одноразрядным (как на рисунке выше) и многоразрядным. В основном в практике используются одно-, двух-, трех- и четырехразрядные светодиодные индикаторы:

Кроме десяти цифр, семисегментные индикаторы способны отображать буквы. Но лишь немногие из букв имеют интуитивно понятное семисегментное представление.
В латинице : заглавные A, B, C, E, F, G, H, I, J, L, N, O, P, S, U, Y, Z, строчные a, b, c, d, e, g, h, i, n, o, q, r, t, u.
В кириллице : А, Б, В, Г, г, Е, и, Н, О, о, П, п, Р, С, с, У, Ч, Ы (два разряда), Ь, Э/З.
Поэтому семисегментные индикаторы используют только для отображения простейших сообщений.

Всего семисегментный светодиодный индикатор может отобразить 128 символов:

В обычном светодиодном индикаторе девять выводов: один идёт к катодам всех сегментов, а остальные восемь - к аноду каждого из сегментов. Эта схема называется «схема с общим катодом» , существуют также схемы с общим анодом (тогда все наоборот). Часто делают не один, а два общих вывода на разных концах цоколя - это упрощает разводку, не увеличивая габаритов. Есть еще, так называемые «универсальные», но я лично с такими не сталкивался. Кроме того существуют индикаторы со встроенным сдвиговым регистром, благодаря чему намного уменьшается количество задействованных выводов портов микроконтроллера, но они намного дороже и в практике применяются редко. А так как необъятное не объять, то такие индикаторы мы пока рассматривать не будем (а ведь есть еще индикаторы с гораздо большим количеством сегментов, матричные).

Многоразрядные светодиодные индикаторы часто работают по динамическому принципу: выводы одноимённых сегментов всех разрядов соединены вместе. Чтобы выводить информацию на такой индикатор, управляющая микросхема должна циклически подавать ток на общие выводы всех разрядов, в то время как на выводы сегментов ток подаётся в зависимости от того, зажжён ли данный сегмент в данном разряде.

Подключение одноразрядного семисегментного индикатора к микроконтроллеру

На схеме ниже, показано как подключается одноразрядный семисегментный индикатор к микроконтроллеру.
При этом следует учитывать, что если индикатор с ОБЩИМ КАТОДОМ , то его общий вывод подключается к «земле» , а зажигание сегментов происходит подачей логической единицы на вывод порта.
Если индикатор с ОБЩИМ АНОДОМ , то на его общий провод подают «плюс» напряжения, а зажигание сегментов происходит переводом вывода порта в состояние логического нуля .

Осуществление индикации в одноразрядном светодиодном индикаторе осуществляется подачей на выводы порта микроконтроллера двоичного кода соответствующей цифры соответствующего логического уровня (для индикаторов с ОК — логические единицы, для индикаторов с ОА — логические нули).

Токоограничительные резисторы могут присутствовать в схеме, а могут и не присутствовать. Все зависит от напряжения питания, которое подается на индикатор и технических характеристик индикаторов. Если, к примеру, напряжение подаваемое на сегменты равно 5 вольтам, а они рассчитаны на рабочее напряжение 2 вольта, то токоограничительные резисторы ставить необходимо (чтобы ограничить ток через них для повышенного напряжении питания и не сжечь не только индикатор, но и порт микроконтроллера).
Рассчитать номинал токоограничительных резисторов очень легко, по формуле дедушки Ома .
К примеру, характеристики индикатора следующие (берем из даташита):
— рабочее напряжение — 2 вольта
— рабочий ток — 10 мА (=0,01 А)
— напряжение питания 5 вольт
Формула для расчета:
R= U/I (все значения в этой формуле должны быть в Омах, Вольтах и Амперах)
R= (напряжение питания — рабочее напряжение)/рабочий ток
R= (5-2)/0.01 = 300 Ом

Схема подключения многоразрядного семисегментного светодиодного индикатора в основном та-же, что и при подключении одноразрядного индикатора. Единственное, добавляются управляющие транзисторы в катодах (анодах) индикаторов:

На схеме не показано, но между базами транзисторов и выводами порта микроконтроллера необходимо включать резисторы, сопротивление которых зависит от типа транзистора (номиналы резисторов рассчитываются, но можно и попробовать применить резисторы номиналом 5-10 кОм).

Осуществление индикации разрядами осуществляется динамическим путем:
— выставляется двоичный код соответствующей цифры на выходах порта РВ для 1 разряда, затем подается логический уровень на управляющий транзистор первого разряда
— выставляется двоичный код соответствующей цифры на выходах порта РВ для 2 разряда, затем подается логический уровень на управляющий транзистор второго разряда
— выставляется двоичный код соответствующей цифры на выходах порта РВ для 3 разряда, затем подается логический уровень на управляющий транзистор третьего разряда
— итак по кругу
При этом надо учитывать:
— для индикаторов с ОК применяется управляющий транзистор структуры NPN (управляется логической единицей)
— для индикатора с ОА — транзистор структуры PNP (управляется логическим нулем)

Со времен появления радиотехники и электроники обратная связь электронного устройства и человека сопровождалась различными сигнальными лампочками, кнопками, тумблерами, звонками (сигнал готовности микроволновки - дзынь!). Некоторые электронные девайсы выдают минимум информации, потому как больше было бы излишним. Например, светящийся светодиодик у вашей китайской зарядки для телефона говорит о том, что зарядка включена в сеть и в нее поступает напряжение. Но есть и такие параметры, для которых было бы удобнее выдавать объективную информацию. Например, температура воздуха на улице или время на будильнике. Да, все это можно было бы сделать также на светящихся лампочках или светодиодах. Один градус - один горящий диодик или лампочка. Сколько градусов - столько и горящих индикаторов. Считать эти светлячки - это дело может быть и привычное, но сколько опять же надо будет таких светиков, чтобы показать температуру с точностью до десятой доли градуса? Да и вообще, какую площадь будут занимать эти светодиоды и лампочки на электронном девайсе?

Практические семисегментные устройства отображения должны иметь не менее восьми внешних соединительных клемм; семь из них дают доступ к отдельным фотоэлектрическим сегментам, а восьмая обеспечивает общее соединение со всеми сегментами. В первом случае устройство известно как семисегментный дисплей общего анода; в последнем случае устройство известно как семисегментный дисплей с общим катодом.

Чтобы управлять дисплеем с общим анодом, драйвер должен иметь активный-низкий выход, в котором каждый сегментный привод обычно высок, но идет низко, чтобы включить сегмент. Чтобы управлять дисплеем с общим катодом, драйвер должен иметь активный активный выход.

И вот в начале двадцатого века, с появлением электронных ламп появились первые газоразрядные индикаторы

С помощью таких индикаторов можно было вывести цифровую информацию в арабских цифрах. Раньше именно на этих лампах делали различную индикацию для приборов и других электронных устройств. В настоящее время газоразрядные элементы почти уже нигде не применяются. Но ретро - это всегда модно, поэтому многие радиолюбители собирают для себя и своих близких прекрасные часики на газоразрядниках.

Полное объяснение этого немного сложнее, следующим образом. Когда напряжение равно нулю, сегмент фактически невидим. Однако, когда напряжение на входе имеет значительное положительное или отрицательное значение, сегмент становится эффективно видимым, но если напряжение привода поддерживается на протяжении более нескольких сотен миллисекунд, сегмент может стать постоянно видимым и не иметь никакого дальнейшего значения.

В этих условиях сегмент отключается. Таким образом, сегмент включен в этих условиях. Эта форма привода обычно известна как система «мостового привода» с удвоением напряжения. Последовательность действий схемы следующая. Простая каскадная система, описанная ранее, страдает от серьезного дефекта, поскольку дисплей становится размытым во время фактического периода подсчета, становясь стабильным и читаемым только тогда, когда каждый счетчик завершен и входной затвор закрыт. Этот «размытый и читаемый» тип дисплея очень раздражает, чтобы смотреть.

Минусы газоразрядных ламп - кушают много. Про долговечность можно и поспорить. У нас в универе до сих пор в лаборантских кабинетах эксплуатируют частотомеры на газоразрядниках.

С появлением светодиодов ситуация изменилась кардинально. Светодиоды сами по себе жрут маленький ток. Если расставить их в нужное положение , то можно высвечивать абсолютно любую информацию. Для того, чтобы высветить все арабские цифры было достаточно всего-то семь (отсюда и название семисегментного индикатора ) светящихся светодиодных полосочек, выставленных определенным образом:

На рисунке 13 показана усовершенствованная схема счетчика частоты, которая использует блокировку дисплея для преодоления вышеупомянутого дефекта. Эта схема работает следующим образом. Одновременно открывается входной затвор, и счетчики начинают суммировать импульсы входного сигнала. Этот счетчик продолжается ровно через одну секунду, и в течение этого периода четырехбитовые защелки не позволяют выходным сигналам счетчика поступать на драйверы дисплея; при этом дисплей остается стабильным в течение этого периода.

Через несколько секунд последовательность повторяется снова, при этом счетчики перезагружаются, а затем подсчитывают импульсы входной частоты в течение одной секунды, в течение которых дисплей дает постоянное считывание результатов предыдущего счета и т.д.

почти ко всем таким семисегментным индикаторам добавляют также и восьмой сегмент - точку, для того, чтобы можно было показать целое и дробное значение какого-либо параметра

Таким образом, схема на рисунке 13 создает стабильный дисплей, который обновляется один раз в секунду; на практике фактический период отсчета этого и схемы на рисунке 12 может быть сделан в любое десятилетие с множественным или неполным числом секунд, при условии, что выходной дисплей соответствующим образом масштабируется.

Обратите внимание, что трехзначный частотомер может указывать максимальные частоты 999 Гц при использовании односекундной базы, 99 кГц при использовании 100 мс временной базы, 9 кГц при использовании временной базы 10 мс и 999 кГц при использовании 1 мс временной базы.

по идее получается восьми сегментный индикатор , но по-старинке его также называют семисегментным, и ошибки в этом нет.

Короче, семисегментный индикатор - это светодиоды, расположенные друг относительно друга в определенном порядке и запендюренные в один корпус.

Этот метод можно понять с помощью рисунков 14 и 15. Эти переключатели соединены вместе и обеспечивают действительное действие мультиплексора и должны рассматриваться как быстродействующие электронные переключатели, которые многократно переключаются через позиции 1, 2, и последовательность операций схемы следующая. Предположим сначала, что переключатель находится в положении.

Несколько мгновений спустя переключатель переходит в положение 3, заставляя дисплей 3 отображать число через несколько минут, весь цикл начинает повторяться снова и так далее, добавляя бесконечность. На практике около 50 из этих циклов происходят каждую секунду, поэтому глаз не видит, что дисплеи включаются и выключаются отдельно, но воспринимают их как явно устойчивый дисплей, который показывает номер 327, или какой-либо другой номер продиктован сегментом данные.

Если рассмотреть схему одиночного семисегментного индикатора, то она выглядит вот так:

Как мы видим, семисегментный индикатор может быть как с общим анодом (ОА) , так и с общим катодом (ОК) . Грубо говоря, если семисегментник у нас с общим анодом (ОА), то в схеме мы должны на этот вывод вешать "плюс", а если с общим катодом (ОК) - то "минус" или землю. На какой вывод мы подадим напряжение, такой светодиодик у нас и загорится. Давайте все это продемонстрируем на практике.

В практических мультиплексорах пиковый ток дисплея получается довольно высоким, чтобы обеспечить достаточную яркость дисплея. На фиг. 15 показан пример усовершенствованного метода мультиплексирования, применяемого к трехзначному частотомеру. Этот метод имеет два основных преимущества.

Если эти терминалы активны высоко, они будут иметь следующие характеристики. Фиг. 18 и 19. На рисунке 18 показана техника гашения пульсаций, используемая для обеспечения подавления начального нуля на четырехзначном дисплее, который считывает количество.

У нас имеются в наличии вот такие светодиодные индикаторы:

Как мы видим, семисегментники могут быть одиночные и многоразрядные, то есть две, три, четыре семисегментника в одном корпусе. Для того, чтобы проверить современный семисегментник, нам достаточно мультиметра с функцией прозвонки диодов. Ищем общий вывод - это может быть или ОА или ОК - методом тыка и потом уже смотрим работоспособность всех сегментов индикатора. Проверяем трехразрядный семисегментник:

Таким образом, дисплей отображает. По сути, они просты в использовании, приводят их в действие, и они загораются. Они могут быть раздражающими, потому что у них есть какая-то полярность, а это значит, что они будут работать только тогда, когда вы их правильно подключите. Если вы отмените положительное и отрицательное напряжение, они не загорятся вообще.

Раздражает, так оно и есть, это тоже весьма полезно. Другой провод - катод. Катод соединяется с землей. В принципе, это дойдет до этого. Для общего катода вы подаете ток на контакты, которые вы хотите включить. Мультиплексирование. Для этого даже существуют контроллеры дисплея, если вы не хотите позаботиться о переключении в вашем программном обеспечении.

Опаньки, у нас загорелся один сегмент, таким же образом проверяем и другие сегменты.

Иногда напряжения на мультике не хватает, чтобы проверить сегменты индикатора. Поэтому берем Блок питания, выставляем на нем 5 Вольт, цепляем к одной клемме блока питания резистор 1-2 килоОма и начинаем проверять семисегментник.

Управление 7-сегментным дисплеем

Поэтому, когда у вас есть 4-значный, мультиплексированный 7 сегмент, общий анод. Во-первых, мы должны знать, какой тип дисплея у нас есть, поскольку есть две возможные формы: общий катод и общий анод. Вещи, которые вам понадобятся для этого урока. Слева: графический вид 7-сегментного дисплея, показывающий одно общее расположение для внутренней проводки и расположения контактов.

На этом этапе обратите внимание на начальный вывод, так как он понадобится вам позже при загрузке программы. Если бы дисплей был обычным катодом, мы бы отменили его. В нижней части статьи находится фотография схемы, идущей на моей плате прототипа. Мы также предоставляем библиотеку для управления более чем одним дисплеем.

Для чего же нам резистор? При подаче на светодиодик напряжения он начинает резко жрать ток при включении. Поэтому в этот момент он может перегореть. Чтобы ограничить ток, последовательно со светодиодом включается в цепь резистор. Более подробно можно прочитать в этой статье.

Подсчет в шестнадцатеричном виде на одном 7-сегментном дисплее

Недостатком является то, что они ресурсоемкие. Этот конкретный дисплей имеет четыре цифры и два дисплея двоеточия. Однако устройство также обеспечивает цифровое управление яркостью дисплея через внутренний широкополосный модулятор. В таких случаях выход может быть выполнен на нескольких 7-сегментных дисплеях.

Это экономит контакты на корпусе, а затем на контроле. Соответственно, упоминаются дисплеи с общим анодом или общим катодом. Вывод, который соответствует сегменту или десятичной точке, лучше всего извлекать из листа данных для отображения. 7-сегментный дисплей, который рассчитан на обычные 10-20 мА, по-прежнему будет гореть, хотя и слабый. Но для этого не требуется назначение контактов. Далее распределение этого сегмента основано на.

Таким же образом проверяем четырехразрядный семисегментник с китайского радиоприемника

Думаю, особых затруднений с этим возникать не должно. В схемах семисегментники цепляются с резисторами на каждом выводе. Это тоже связано с тем, что светодиодики при подаче напряжения на них бешенно жрут ток и выгорают.

Если используется другое назначение, это возможно в принципе, но это следует учитывать при программировании. Преобразование отдельных цифр в конкретный шаблон вывода может выполняться с помощью так называемого. Все остальные сегменты должны быть темными. Если этот флажок установлен для всех цифр, дается следующая таблица.

В тестовой программе последовательно отображаются цифры от 0 до 9 на 7-сегментном дисплее. Выходящий номер сохраняется в регистровом счетчике и увеличивается на 1 в пределах цикла. Если регистр достиг значения 10, он снова сбрасывается на 0. После повышения возникает цикл ожидания, который гарантирует, что определенное время пройдет в следующем выпуске. Обычно вы не делаете таких длинных циклов ожидания, но это не про ожидание, а контроль 7-сегментного дисплея. Использовать таймер для этого - это слишком много усилий.

В нашем современном мире семисегментники уже заменяются жк-индикаторами, которые могут высвечивать абсолютно различную информацию

но для того, чтобы их использовать, нужны определенные навыки в схемотехнике таких устройств. Пока что проще и дешевле светодиодных семисегментных индикаторов ничего нет.

Фактическая проблема и, следовательно, интересная в этой статье часть, однако, происходит непосредственно после цикла метки. Обратите внимание, что значение счетчика должно быть удвоено. Это напрямую связано с тем, что флеш-память носит словесный характер, а не байт-мудрый. Во втором примере на этой странице это делается по-другому. Там показано, как посредством другой записи таблицы генерация байтов заполнения может быть предотвращена ассемблером. Интересно также, что для расчета требуется регистр, который содержит значение 0.

Следовательно, эта константа должна быть сначала загружена в регистр и только после этого может быть выполнено добавление с использованием этого регистра. Интересно то, что этот факт встречается во многих программах, а константы в подавляющем большинстве случаев - это константа 0. Поэтому многие программисты резервируют регистр с самого начала для этого и называют его нулевым регистром.

В этой статье мы поговорим о цифровой индикации.
Семисегментные светодиодные индикаторы предназначены для отображения арабских цифр от 0 до 9 (рис.1).

Такие индикаторы бывают одноразрядные, которые отображают только одно число, но семисегментных групп, объединенных в один корпус может быть и больше (многоразрядные). В этом случае цифры разделяются децимальной точкой (рис.2)

К сожалению, есть проблема, потому что для отображения необходимо восемь портов - четыре объявления потребуют 32 порта. Но есть несколько путей. Сдвиговые регистры уже описаны в другом учебнике. Это упростило бы создание требуемых 32 выходных линий только с тремя выводами. Принцип управления не отличается от управления одним 7-сегментным дисплеем, только то, как «выходные выводы» приближаются к их значениям, отличается и определяется использованием сдвиговых регистров. На данный момент, однако, должен быть показан другой вариант управления.



Рис.2.

Индикатор называется семисегментным из-за того, что отображаемый символ строится из отдельных семи сегментов. Внутри корпуса такого индикатора находятся светодиоды, каждый из которых засвечивает свой сегмент.
Буквы и другие символы на таких индикаторах отображать проблематично, поэтому для этих целей используются 16-сегментные индикаторы.

Ниже мы рассмотрим мультиплексирование еще раз. Мультиплексирование означает, что не все четыре дисплея включаются одновременно, но только один на короткое время. Если изменение между дисплеями происходит быстрее, чем мы, люди, можем воспринимать, все четыре индикатора, похоже, работают одновременно, хотя на один короткий промежуток времени светится только один. Таким образом, четыре дисплея могут разделять отдельные сегменты сегмента, и все, что требуется, - это 4 дополнительные линии управления для 4 дисплеев, с которыми включен дисплей.

Одним из аспектов этого типа управления является частота мультиплексирования, то есть полный цикл перехода с одного дисплея на другой. Он должен быть достаточно высоким, чтобы избежать мерцания дисплея. Человеческий глаз вялый, в кинотеатре 24 кадра в секунду, с телевизором, чтобы быть на безопасной стороне, что также неподвижные изображения спокойны, каждый сегмент должен контролироваться не менее 100 Гц, поэтому он подключается, по крайней мере, каждые 10 мс. В исключительных случаях, однако, даже 100 Гц все еще могут мерцать, Например, когда дисплей перемещается быстро или когда возникают помехи с искусственными источниками света, которые работают с переменным током.

Светодиодные индикаторы бывают двух типов.
В первом из них все катоды, т.е. отрицательные выводы всех светодиодов, объединены вместе и для них выделен соответствующий вывод на корпусе.
Остальные выводы индикатора соединены к аноду каждого из светодиодов (рис.3, а). Такая схема называется «схема с общим катодом».
Также существуют индикаторы, у которых светодиоды каждого из сегментов подключены по схеме с общим анодом (рис.3, б).



Рис.3.

Каждый сегмент обозначен соответствующей буквой. На рисунке 4 представлено их расположение.

Рис.4.

В качестве примера рассмотрим двухразрядный семисегментный индикатор GND-5622As-21 красного свечения. Кстати существуют и другие цвета, в зависимости от модели.
С помощью трехвольтовой батарейки можно включать сегменты, а если объединить группу выводов в кучку и подать на них питание, то можно даже отображать цифры. Но такой метод является неудобным, поэтому для управления семисегментными индикаторами используют регистры сдвига и дешифраторы. Также, нередко, выводы индикатора подключаются напрямую к выходам микроконтроллера, но лишь в том случае когда используются индикаторы с низким потреблением тока. На рисунке 5 представлен фрагмент схемы с использованием PIC16F876A.



Рис.5.

Для управления семисегментным индикатором часто используется дешифратор К176ИД2.
Эта микросхема способна преобразовать двоичный код, состоящий из нулей и единиц в десятичные цифры от 0 до 9.

Чтобы понять, как все это работает, нужно собрать простую схему (рис.6). Дешифратор К176ИД2 выполнен в корпусе DIP16. Он имеет 7 выходных вывода (выводы 9 - 15), каждый из которых предназначен для определенного сегмента. Управление точкой здесь не предусмотрено. Также микросхема имеет 4 входа (выводы 2 - 5) для подачи двоичного кода. На 16-й и 8-ой вывод подается плюс и минус питания соответственно. Остальные три вывода являются вспомогательными, о них я расскажу чуть позже.



Рис.6.

DD1 - К176ИД2
R1 - R4 (10 - 100 кОм)
HG1 - GND-5622As-21

В схеме присутствует 4 тумблера (можно любые кнопки), при нажатии на них на входы дешифратора подается логическая единица от плюса питания. Кстати питается сама микросхема напряжением от 3 до 15 Вольт. В данном примере вся схема питается от 9-вольтовой "кроны".

Также в схеме присутствует 4 резистора. Это, так называемые, подтягивающие резисторы. Они нужны, чтобы гарантировать на логическом входе низкий уровень, при отсутствии сигнала. Без них показания на индикаторе могут отображаться некорректно. Рекомендуется использовать одинаковые сопротивления от 10 кОм до 100 кОм.

На схеме выводы 2 и 7 индикатора HG1 не подключены. Если подключить к минусу питания вывод DP, то будет светиться децимальная точка. А если подать минус на вывод Dig.2, то будет светиться и вторая группа сегментов (будет показывать тот же символ).

Входы дешифратора устроены так, что для отображения на индикаторе чисел 1, 2, 4 и 8 требуется нажатие лишь одной кнопки (на макете установлены тумблеры, соответствующие входам D0, D1, D2 и D3). При отсутствии сигнала отображается цифра ноль. При подаче сигнала на вход D0 отображается цифра 1. И так далее. Для отображения других цифр требуется нажатие комбинации тумблеров. А какие именно нужно нажимать нам подскажет таблица 1.


Таблица 1.

Чтобы отобразить цифру "3" необходимо логическую единицу подать на вход D0 и D1. Если подать сигнал на D0 и D2, то отобразится цифра "5" (рис.6).



Рис.6.

Здесь представлена расширенная таблица, в которой мы видим не только ожидаемую цифру, но и те сегменты (a - g), которые составят эту цифру.



Таблица 2.

Вспомогательными являются 1, 6 и 7-ой выводы микросхемы (S, M, К соответственно).

На схеме (рис.6) 6-ой вывод "М" заземлен (на минус питания) и на выходе микросхемы присутствует положительное напряжение для работы с индикатором с общим катодом. Если используется индикатор с общим анодом, то на 6-ой вывод следует подать единицу.

Если на 7-ой вывод "К" подать логическую единицу, то знак индикатора гасится, ноль разрешает индикацию. В схеме данный вывод заземлен (на минус питания).

На первый вывод дешифратора подана логическая единица (плюс питания), что позволяет отображать преобразованный код на индикатор. Но если подать на данный вывод (S) логический ноль, то входы перестанут принимать сигнал, а на индикаторе застынет текущий отображаемый знак.

Стоит заметить одну интересную вещь: мы знаем, что тумблер D0 включает цифру "1", а тублер D1 цифру "2". Если нажать оба тумблера, то высветится цифра 3 (1+2=3). И в других случаях на индикатор выводится сумма цифр, составляющих эту комбинацию. Приходим к выводу, что входы дешифратора расположены продуманно и имеют очень логичные комбинации.

Также вы можете посмотреть видео к этой статье.

Семисегментными индикаторами в наше время называют устройства, которые отображают цифровую информацию. В электрических приборах данные элементы используются довольно часто. Если к ним подключить модулятор, то можно сделать из индикаторов интересные электронные часы. Чтобы более подробно разобраться в этом вопросе, необходимо изучить основные типы устройств. Также важно ознакомиться с моделями, которые представлены на рынке.

Одноразрядные модели

Одноразрядный семисегментный индикатор (схема показана ниже) в наше время отличается своей простотой. Как правило, контакты у моделей установлены в параллельном порядке. При этом светодиоды используются самые обычные. Сделать электронные часы из одноразрядных индикаторов можно довольно просто. В данном случае блок питания потребуется на 30 В.

Также следует учитывать, что модулятор для этого типа индикаторов может использоваться исключительно одноканальный. Непосредственно регулятор для него важно вывести через двойной переходник. При этом резисторы для часов подойдут как импульсного, так и инерционного типа. Непосредственно подключение семисегментного индикатора осуществляется через проводник. Предельное напряжение он обязан выдерживать не менее 35 В. При этом параметр силы тока должен составлять 5 А.

Двухразрядные модификации

Двухразрядные модификации на сегодняшний день являются довольно распространенными. Светодиоды в данном случае чаще всего используются красного типа. Однако на рынке можно найти и другие варианты. Сила свечения у данных индикаторов зависит от производителя. Как правило, контакты у них устанавливаются медного типа.

При этом резисторы используются в основном импульсные. Для того чтобы понять, как сделать часы на практике, необходимо заранее подготовить модулятор, а также преобразователь для устройства. В первую очередь для часов подбирается корпус. При этом семисегментные индикаторы важно устанавливать на модулятор. Непосредственно регулятор должен располагаться в стороне. Соединяется он с блоком питания через тетрод. Также для лучшей проводимости многие специалисты рекомендуют использовать усилитель. В данном случае блок питания подойдет на 15 В. В конце работы останется лишь зафиксировать проводник.

Трехразрядные устройства

Трехразрядные устройства обладают большой мощностью. Светодиоды в данном случае имеются резонансного типа, и на рынке они, как правило, представлены белого цвета. Резисторы для подключения индикаторов применяются инерционного типа. Для того чтобы сделать из трехразрядной модификации часы, потребуется найти качественный модулятор. При этом управление семисегментным индикатором будет происходить через регулятор кнопочного типа.

Тетроды в данном случае пороговое напряжение обязаны выдерживать на уровне 15 В. Проводимость их зависит от частотности конденсаторов. Многие специалисты при сборе часов советуют преобразователи устанавливать с тиристором. В данном случае блок питания можно использовать без усилителя. Для подключения индикаторов понадобятся проводники. Для безопасного использования прибора их необходимо изолировать.

Индикаторы серии E 10561

Семисегментный светодиодный индикатор данной серии отличается повышенным параметром рассеивания. В данном случае цифры видны очень четко. Светодиоды в таких устройствах используются, как правило, асинхронного типа. При этом резонансные модели также встречаются. Чтобы подключить устройство к регулятору, потребуются мощные резисторы. В данном случае преобразователи используются с тиристорами.

Пороговая частота этих устройств не должна превышать 3 Гц. При этом блоки питания, как правило, используются на 30 В. В такой ситуации показатель номинального тока должен располагаться на уровне 12 А. Все это позволит успешно включить индикатор. Непосредственно подсоединение прибора осуществляется через контакты. В некоторых случаях тетрод в цепи может располагаться после преобразователя. В таком случае можно надеяться на пороговое напряжение на уровне 15 В.

Особенности моделей серии E 15461

Семисегментные индикаторы данной серии относятся к классу двухразрядных. В этом случае светодиоды в устройствах установлены резонансного типа. Для подключения модели используются медные контакты. Сделать часы в данном случае довольно просто. Модулятор для этих целей можно использовать одноканального типа. При этом резисторы подбираются средней мощности. Напряжение они обязаны выдерживать минимум на уровне 20 В.

Блоки питания для этих целей можно использовать от персонального компьютера. Также следует отметить, что указанные индикаторы являются довольно компактными. При этом яркость их можно регулировать при помощи модуляторов. Для этого дополнительно потребуется установка преобразователя. Для повышения мощности свечения используются поворотные регуляторы. Усилители в данном случае устанавливаются довольно редко.

Подключение устройства серии E 10578

Индикаторы указанной серии имеются с резонансными светодиодами. В настройке они довольно просты и цифры способны отображать четко. Также следует учитывать, что параметр рассеивания у них очень высокий. Таким образом, устанавливать их в электронные приборы можно довольно просто. Как правило, такие модели используются в микроволновых печах. При этом для секундомеров они также подходят. В данном случае модулятор устанавливается с расширителем. При этом многоканальные модификации являются более распространенными. Усилители для устройств подходят только низкоомного типа. Дополнительно следует учитывать, что частотность модели зависит от блока питания. Если рассматривать прибор на 20 В, то вышеуказанный параметр будет находиться в районе 4 Гц.

Схема индикаторов серии E 10509

Семисегментные индикаторы данного типа способны похвастаться высокой чувствительностью. При этом светодиоды для них подходят резонансные. На рынке они чаще всего представлены красного и синего цвета. Резисторы для подключения модели применяются в основном импульсные. Однако инерционные аналоги также активно используются в бытовой технике. Тетроды в данном случае напряжение должны быть способны выдерживать максимум на уровне 30 В.

При этом система контактов, как правило, подбирается на два проводника. Усилитель для сборки часов потребуется низкоомного типа. Все это необходимо для того, чтобы справляться с большим отрицательным сопротивлением. Однако в данной ситуации многое зависит от модулятора, который устанавливается.

Применение индикаторов серии E 22563

Индикаторы данного типа на сегодняшний день являются довольно востребованными. На электронные приборы указанные модели устанавливать можно. При этом в промышленной сфере устройства данного типа также являются востребованными. В этом случае светодиоды устанавливаются средней мощности. Причем контактные системы на рынке представлены самые разнообразные.

Подключение моделей к модулятору, как правило, осуществляется через тетроды. Преобразователи подходят с частотой не менее 4 Гц. Дополнительно следует учитывать, что параметр рассеивания свечения светодиодов зависит от мощности блока питания. Если рассматривать самые простые часы с модулятором серии РР20, то он подбирается на 20 В.

Модель на хроматических резисторах

Семисегментные индикаторы на хроматических резисторах встречаются довольно редко. Модуляторы в данном случае могут использоваться только одноканального типа. Также следует учитывать, что при подключении устройства обязательно необходимо устанавливать усилители. Все это позволит стабилизировать в цепи параметр порогового напряжения. Блоки питания в данном случае можно использовать от персональных компьютеров. Также важно учитывать, что чувствительность системы зависит от типа тетродов.

Использование оптических модуляторов

Оптические модуляторы, как правило, используются с индикаторами резонансного типа. При этом на электроприборы данные конфигурации устанавливаются часто. В данном случае регуляторы используются в основном поворотного типа. При этом кнопочные варианты встречаются довольно редко. Резисторы для указанных систем подходят асинхронного типа. Непосредственно подсоединение модуляторов в цепи происходит через преобразователи.

При таком подходе, для вывода числа с любым количеством разрядов используется всего 2 цифровых выхода Arduino.

Для примера будем выводить на индикаторы количество секунд, прошедших с момента старта работы.

Исходные компоненты

Принцип работы

Семисегментный индикатор - это просто набор обычных светодиодов в одном корпусе. Просто они выложены восьмёркой и имеют форму палочки-сегмента. Можно подключить его напрямую к Arduino, но тогда будет занято 7 контактов, а в программе будет необходимо реализовать алгоритм преобразования числа из двоичного представления в соответствующие «калькуляторному шрифту» сигналы.

Для упрощения этой задачи существует 7-сегментный драйвер. Это простая микросхема с внутренним счётчиком. У неё есть 7 выходов для подключения всех сегментов (a, b, c, d, e, f, g pins), контакт для сбрасывания счётчика в 0 (reset pin) и контакт для увеличения значения на единицу (clock pin). Значение внутреннего счётчика преобразуется в сигналы (включен / выключен) на контакты a-g так, что мы видим соответствующую арабскую цифру.

На микросхеме есть ещё один выход, обозначенный как «÷10». Его значение всё время LOW за исключением момента переполнения, когда значение счётчика равно 9, а его увеличивают на единицу. В этом случае значением счётчика снова становится 0, но выход «÷10» становится HIGH до момента следующего инкремента. Его можно соединить с clock pin другого драйвера и таким образом получить счётчик для двузначных чисел. Продолжая эту цепочку, можно выводить сколь угодно длинные числа.

Микросхема может работать на частоте до 16 МГц, т.е. она будет фиксировать изменения на clock pin даже если они будут происходить 16 миллионов раз в секунду. На той же частоте работает Arduino, и это удобно: для вывода определённого числа достаточно сбросить счётчик в 0 и быстро инкрементировать значение по единице до заданного. Глазу это не заметно.

Подключение

Сначала установим индикаторы и драйверы на breadboard. У всех них ноги располагаются с двух сторон, поэтому, чтобы не закоротить противоположные контакты, размещать эти компоненты необходимо над центральной канавкой breadboard’а. Канавка разделяет breadboard на 2 несоединённые между собой половины.

    16 - к рельсе питания: это питание для микросхемы

    2 «disable clock» - к рельсе земли: мы его не используем

    3 «enable display» - к рельсе питания: это питание для индикатора

    8 «0V» - к рельсе земли: это общая земля

    1 «clock» - через стягивающий резистор к земле. К этому контакту мы позже подведём сигнал с Arduino. Наличие резистора полезно, чтобы избежать ложного срабатывания из-за окружающих помех пока вход ни к чему не подключен. Подходящим номиналом является 10 кОм. Когда мы соединим этот контакт с выходом Arduino, резистор не будет играть роли: сигнал притянет к земле микроконтроллер. Поэтому если вы знаете, что драйвер при работе всегда будет соединён с Arduino, можете не использовать резистор вовсе.

    15 «reset» и 5 «÷10» пока оставим неподключенными, но возьмём на заметку - нам они понадобятся в дальнейшем

Контакты 3 и 8 на индикаторе обозначены как «катод», они общие для всех сегментов, и должны быть напрямую соединены с общей землёй.

Далее следует самая кропотливая работа: соединение выходов микросхемы с соответствующими анодами индикатора. Соединять их необходимо через токоограничивающие резисторы как и обычные светодиоды. В противном случае ток на этом участке цепи будет выше нормы, а это может привести к выходу из строя индикатора или микросхемы. Номинал 220 Ом подойдёт.

Соединять необходимо сопоставляя распиновку микросхемы (выходы a-g) и распиновку индикатора (входы a-g)

Повторяем процедуру для второго разряда

Теперь вспоминаем о контакте «reset»: нам необходимо соединить их вместе и притянуть к земле через стягивающий резистор. В последствии, мы подведём к ним сигнал с Arduino, чтобы он мог обнулять значение целиком в обоих драйверах.

Также подадим сигнал с «÷10» от правого драйвера на вход «clock» левого. Таким образом мы получим схему, способную отображать числа с двумя разрядами.

Стоит отметить, что «clock» левого драйвера не стоит стягивать резистором к земле, как это делалось для правого: его соединение с «÷10» само по себе сделает сигнал устойчивым, а притяжка к земле может только нарушить стабильность передачи сигнала.

Железо подготовленно, осталось реализовать несложную программу.

Программирование

7segment.pde #define CLOCK_PIN 2 #define RESET_PIN 3 /* * Функция resetNumber обнуляет текущее значение * на счётчике */ void resetNumber() { // Для сброса на мгновение ставим контакт // reset в HIGH и возвращаем обратно в LOW digitalWrite(RESET_PIN, HIGH) ; digitalWrite(RESET_PIN, LOW) ; } /* * Функция showNumber устанавливает показания индикаторов * в заданное неотрицательное число `n` вне зависимости * от предыдущего значения */ void showNumber(int n) { // Первым делом обнуляем текущее значение resetNumber() ; // Далее быстро «прокликиваем» счётчик до нужного // значения while (n-- ) { digitalWrite(CLOCK_PIN, HIGH) ; digitalWrite(CLOCK_PIN, LOW) ; } } void setup() { pinMode(RESET_PIN, OUTPUT) ; pinMode(CLOCK_PIN, OUTPUT) ; // Обнуляем счётчик при старте, чтобы он не оказался // в случайном состоянии resetNumber() ; } void loop() { // Получаем количество секунд в неполной минуте // с момента старта и выводим его на индикаторы showNumber((millis() / 1000 ) % 60 ) ; delay(1000 ) ; }

Результат

Подключаем контакт 2 с Arduino к контакту clock младшего (правого) драйвера, контакт 3 - к общему reset’у драйверов; разводим питание; включаем - работает!

Рекомендуем почитать

Наверх