Универсальные процессоры карты. Количество унифицированных шейдерных блоков (или универсальных процессоров)

Решение проблем 11.11.2019
Решение проблем

О чём будет рассказываться в этой небольшой статье?

Данная статья – набор базовых знаний для тех, кто хочет выбрать сбалансированную видеокарту, не отдавая лишних денег маркетологам. Поможет новичкам, а так же, послужит источником полезной информации и для более продвинутых пользователей ПК. Тем не менее, мини статья всё же, ориентирована именно на новичков .

Предназначение видеокарты.

Ни для кого не секрет, что в наше время, основным полем деятельности для производительной видеокарты являются – 3 D игры, плавное проигрывание видео (HD ), работа в профессиональных 3D2D и видео редакторах. Остальные, повседневные задачи можно без проблем выполнять и на встроенных в процессор или чипсет видеокартах. С недавнего времени, для видеокарты расширили поле деятельности, в виде многопоточных вычислений , которые работают гораздо быстрее на параллельной архитектуре видеокарт, чем на процессорах.

NVidia продвигает свою программно-аппаратную платформу CUDA , основанную на языке Си (между прочим удачно, и это не удивительно, при вложении таких то средств). AMD же, в основном полагается на открытый код OpenCL .

С помощью можно кодировать видео в 3-4 раза быстрее . Аппаратно, силами видеокарт ускорять продукты компании Adobe – в частности Photoshop , Flash , и это по видимому только начало. Правда, тех людей которые постоянно пользуются вычислительной мощностью видеокарт, теоретически очень мало. И казалось задумываться об этом пока рано, тем более на пятки наступают много ядерные процессоры, которые хоть и медленнее в многопоточных операциях, но имеют неоспоримый плюс в том, что они без сложных программных оптимизаций просто делают своё дело. А простота и удобство реализации, как показывает история Windows (к примеру) – для людей главное и залог успеха на Software рынке. И всё равно стоит отдать дань вычислительной мощи видеокарт, пока не обузданной «правильным» софтом.

Итак. NVidia или AMD ?

*Самый «интересный» вопрос

Главными игроками на рынке графических ускорителей являются корпорации AMD и NVidia .


Тут всё понятно, как и во многих секторах рынков, дуополия. Как Pepsi и Coca — Cola , как и Xbox 360 , как Intel и AMD в конце концов. С недавнего времени, компании выпускают свои продукты поочерёдно. Затем чтобы и одной было хорошо и второй. Сначала AMD выпускает флагмана линейки, затем месяца через два-три, более мощного флагмана выпускает NVidia . Сначала покупаются карты от AMD , как самые мощные, затем после выхода карт NVidia , купившие их, снова идут в магазин, за ещё лучшим продуктом. Практически то же самое происходит и со средним и бюджетным рынком. Только разброс по увеличенной производительности относительно конкурента здесь выше, так как чтобы заинтересовать более экономного потребителя, требуется нечто большее, чем шанс обладать лучшей видеокартой, как это происходит в секторе флагманов.

Лучше не «фанатеть», ведь это бизнес и ничего личного. Главное чтобы видеокарты были производительными, а цены не кусались. И какой производитель — не суть важно. С таким подходом можно всегда оставаться в выигрыше по ценепроизводительности.

Архитектура чипа.

Количество пиксельных процессоров (для AMD ), универсальных конвейеров (для NVidia ).

Да. Это совершенно разные вещи. То, что у AMD Radeon HD 5870 1600 исполнительных блоков совершенно не значит, что она будет в 3 раза мощнее, чем NVidia GTX 480 у которой на борту имеется 480 исполнительных блоков.

NVidia имеет скалярную архитектуру, а AMD супер скалярную .

AMD архитектуры.

Рассмотрим архитектуру ПП (*пиксельных процессоров), на примере базовой супер скалярной архитектуры видеокарт Radeon HD 5 серии (5-way VLIW ).


Каждые 5 пп составляют один исполнительный блок, который за раз может выполнить максимум — 1 скалярную операцию и 1 векторную или иногда 5 скалярных (однако условия не всегда подходят для этого). Каждая векторная операция требует 4 ПП , каждая скалярная 1 ПП . И тут, уж как получится. У NVidia же, каждое Cuda Core , исполняет строго по 1 векторной и 1 скалярной операции за такт.

С выходом 6 серии, под кодовым именем (Nothern Islands ), а именно чипов Cayman, решили отказаться от дополнительного, пятого ALU (T-unit ), который отвечал за выполнение сложных задач.

Теперь эту роль могут исполнять три из четырёх оставшихся блоков. Это позволило разгрузить диспетчер потоков (Ultra-Threaded Dispatch Processor ), которых в придачу стало вдвое больше для улучшения работы с геометрией и тесселяцией, которые были слабой стороной 5 серии. Плюс ко всему, позволяет сэкономить на площади ядра и транзисторном бюджете при той же эффективности.

После шестой серии, работа в направлении развития VLIW закончилась, ввиду её слабой гибкости и большого времени простоя из-за зависимостей внутренних блоков друг от друга (в особенности векторные операции). На первый план вышла совершенно новая архитектура Graphics Core Next .

Движок SIMD , сменяется вычислительным блоком Compute Unit (CU ), что позволяет значительно поднять уровень эффективности и производительности архитектуры. Каждый ПП, теперь может независимо выполнять векторные и скалярные операции, так как для них ввели раздельные блоки управления, которые более эффективно распределяют ресурсы между свободными блоками. В целом, архитектура начинает обретать кое какие предпосылки скалярной архитектуры от NVidia , которая отличается простотой и эффективностью.

Первым чипом с новой архитектурой стал GPU Tahiti , на котором строятся AMD Radeon HD 7970 /7950 . Компания планирует выпустить и средний класс на новой архитектуре.

Теперь рассмотрим базовую, скалярную архитектуру NVidia .


Как мы видим, каждый универсальный процессор ( ), за такт исполняет 1 скалярную операцию и 1 векторную. Это позволяет добиться максимальной плавности. Там где много векторных и скалярных операций, видеокарты AMD с архитектурой VLIW уступают, так как они не способны загрузить работой свои блоки каквидеокарты NVidia .

Допустим выбор пал между Radeon HD 5870 и GeForce GTX 480 .

У первой 1600пп , у второй 480 унифицированных блоков.

Вычисляем: 16005=320 суперскалярных блоков, у Radeon HD 5870.

То есть за такт видеокарта от AMD , выполняет от 320 до 1600 скалярных операций и от 0 до 320 плавающих векторных, в зависимости от характера задачи.

А при удвоенной частоте шейдерного домена, карта на архитектуре Fermi , теоретически должна выполнять 960 векторных и 960 скалярных операций за такт.

Однако Radeon , имеет более выгодную частоту, чем карта из «зелёного лагеря» (700 против 850). Так что, такие показатели NVidia , теоретически должны быть как при частоте работы шейдерного домена на частоте 1700мгц (850 x 2=1700), а это не так. При частоте 1401 Мгц, GTX 480 выдаёт ~ 700 векторных и ~ 700 скалярных операций за такт.

* не стоит полагаться на достоверность данных вычислений, они носят лишь теоретический характер. К тому же данное утверждение не действует с 6-й серии Radeon , начиная с чипов Cayman .

За счёт того, что максимальное количество векторных и скалярных операций выполняется одинаковое количество, архитектура NVidia имеет лучшую плавность в сложных сценах, чем AMD VLIW (<5 series).

Ценовые категории и что мы получаем, если покупаем видеокарту серией помладше.

Инженеры AMD , не задумываясь режут половину пиксельных процессоров, шину памяти и часть ROP ’ s поколению карт, из сегмента на класс ниже. К примеру Radeon HD 5870 имеет 1600пп , шину 256 bit , а в 577 0, всего этого осталось ровно половина – 800 , и шина памяти 128 bit . Такая же ситуация продолжается и до самых бюджетных видеокарт. Так что, всегда предпочтительнее будет приобрести более слабую видеокарту из 58** серии, чем самую старшую из серии 57**.

У инженеров NVidia , не много иной подход. Плавно, обрезается шина памяти, универсальные конвейеры, ROP ’ s , пиксельные конвейеры. Но так же и снижаются частоты, которые при должной системе охлаждения, можно немного компенсировать разгоном. Немного странно, что не наоборот, как это делает AMD , повышая частоты на картах с обрезанным количеством исполнительных элементов.

Подход AMD более выгоден производителю, подход NVidia — покупателю.

Упоминание о драйверах.

Именно из-за особенностей суперскалярной архитектуры VLIW , драйвера от AMD , приходится постоянно оптимизировать, чтобы видеокарта понимала, когда ей нужно использовать векторы или скаляры максимально эффективно.

Унифицированные драйвера от NVidia более невосприимчивы к различным движкам игр, благодаря тому, что инженеры NVidia зачастую уже при разработке игры оптимизируют её под архитектуру своих видео чипов и драйверов. Также стоит отметить, что при их установке и удалении не возникает практически никаких проблем, которые присущи драйверам от AMD .

Драйвера NVidia можно устанавливать прямо на старые, без удаления и без чисток реестра. Надеемся, что программисты AMD будут двигаться в том же направлении. Появилась возможность, скачивать «фиксы» для драйверов Catalyst , которые выходят незадолго до появления игры в продаже или чуть позже. Уже что то. А с выходом новой архитектуры Graphics Core Next , работа по оптимизации драйверов значительно облегчится.

Пиксельные конвейеры, TMU , ROP .

Также, очень важно число пиксельных конвейеров и TMU (блок наложения текстуры ), их количество особенно важно при высоких разрешениях и при использовании анизотропной фильтрации текстур (важны пиксельные конвейеры ), использовании высокого качества текстур и высоких настроек анизотропной фильтрации (важны TMU ).

Количество блоков ROP (блоки растровых операций ), в основном влияют на производительность сглаживания, но при их недостатке может быть потеря общей производительности. Чем их больше, тем незаметнее будет влиять сглаживание на количество кадров секунду. Так же, на производительность сглаживания, существенно влияет объём видеопамяти.

Объём, частота и разрядность шины памяти.

Чем больше видеопамяти у видеокарты, тем лучше. Однако не стоит покупаться на большой объём .

Как часто бывает, на относительно слабые видеокарты, ставят неимоверные объёмы видеопамяти, да ещё и медленной (к примеру на GeForce 8500 GT , некоторые OEM производители ставят по 2 Гб DDR 2 видеопамяти). От этого видеокарта не взлетит, и производительности не добавится.

* в сравнении с 8500 GT 512 мб

Гораздо лучшим вариантом, будет взять видеокарту с более быстрой памятью, но меньшим объёмом. К примеру, если выбор стоит: взять 9800 GT с 512 или 1024 мб памяти, с частотой 1000мгц и 900мгц соответственно, то предпочтительней будет взять 9800 GT с 512 мб памяти. Тем более видеокарта такого уровня не нуждается в видеопамяти больше чем 512 мб .

Пропускная способность памяти – это главное в производительности подсистемы видеопамяти, которая наиважнейшим образом влияет на производительность видеокарты в целом. Измеряется в Гб/c (гигабайт в секунду).

К примеру сейчас, активно используется видеопамять типа GDDR 5 , у которой гораздо выше частотный потенциал, чем у GDDR 3 , и соответственно белее высокая пропускная способность.

Однако частота это далеко не всё. Вторым важным фактором, является разрядность шины памяти . Чем выше разрядность, тем быстрее память.

К примеру, память с частотой 1000мгц и шиной 256 bit , будет ровно в 2 раза быстрее памяти 1000мгц и шиной 128 bit . Чем больше разрядность — тем быстрее память. Самая широкая шина памяти из существующих – это монструозная 896 bit (448 x 2 ) на видеокарте GeForce GTX 295 . Однако в ней используется память GDDR 3 , что существенно ухудшает пропускную способность (меньше эффективная частота) в сравнении с GDDR 5 . Поэтому, её пропускная способность, даже немного ниже, чем у Radeon HD 5970 с 512 bit (256 x 2), но с GDDR 5 .

Система охлаждения.

Чем эффективнее система охлаждения, тем меньше шанс, что ваша видеокарта выйдет из строя. Карта будет меньше перегреваться, что улучшит общую стабильность системы, значительно увеличит срок службы , а так же повысит разгонный потенциал .

Выпускаемые, готовые с истемы о хлаждения видеокарт бывают двух вариаций.



Референсные (от производителя) и альтернативные (от партнёров производителя). Как правило, референсные карты имеют турбинное ( , blower) исполнение, и обычно очень надёжны. Относительно шумны, не всегда так эффективны, как альтернативные СО от партнёров производителя и сильнее забиваются пылью. Хотя при использовании , бловерные системы охлаждения видеокарт очень эффективные и тихие. Если небольшой шум при нагрузке вас не беспокоит, и вы не будете ставить рекордов в разгоне, референсные системы охлаждения — предпочтительней. Обычно, партнёры производителей, обклеивают их наклейками со своими логотипами, изменения возможны лишь в BIOS-е видеокарты (регулировка оборотов вентилятора), поэтому некоторые карты идентичные по дизайну, но от разных производителей, шумнее либо горячее своих собратьев и наоборот. У каждого из производителей, свои предпочтения и гарантийные условия. Потому, некоторые жертвуют тишиной для большей стабильности и долговечности.



Если же вам важна тишина , то стоит обратить внимание на альтернативные системы охлаждения повышенной эффективности, с меньшим уровнем шума (к примеру Vapor — x , IceQ , , DirectCu), или же выбрать видеокарту с пассивной системой охлаждения, коих сейчас всё больше.

* Совет : не забывайте раз в год-два, менять термоинтерфейс, особенно на СО с технологией прямого контакта тепловых трубок. Термопаста застывает, образуя слой, плохо проводящий тепло, что ведёт к перегреву видеокарты.

Энергопотребление видеокарты.

Очень важная характеристика при выборе, так как видеокарта является очень прожорливым компонентом компьютера, если не самым прожорливым. Топовые видеокарты иногда приближаются к отметке 300W . Поэтому при выборе, следует учитывать, способен ли ваш блок питания обеспечить видеокарте стабильное питание. Иначе система может либо не запуститься из-за несоответствия напряжения при прохождении POST , могут появиться нестабильности в работе и неожиданные выключения, перезагрузки или перегрев компонентов компьютера, либо блок питания может просто сгореть.

На сайте производителя или коробке видеокарты, написаны минимальные характеристики, среди которых минимальная мощность блока питания. Данные значения написаны для любых блоков, в том числе и китайских. Если вы уверены что у вас качественный блок питания, можно отнять от этого значения 50-100W .

Косвенно определить энергопотребление можно по количеству дополнительных разъёмов для питания на видеокарте.

Ни одного – меньше 75W , один 6-pin до 150W , два 6-pin до 225W , 8-pin + 6-pin – до 300W . Убедитесь что ваш блок имеет необходимые разъёмы или чтобы в комплекте были переходники под 4-х штырьковые molex -ы. Либо докупите их, они свободно продаются в компьютерных магазинах.

Недостаток питания видеокарты может привести к её перегреву, появлению артефактов и выходу её системы питания из строя. Видеокарты NVidia , при недостатке питания могут начать предупреждать сообщениями вида: «видео драйвер перестал отвечать и был восстановлен» или «подключите дополнительное питание к видеокарте».

Высокое энергопотребление = большое тепловыделение . Если ваша видеокарта потребляет много энергии, позаботьтесь о дополнительных вентиляторах на вдув и выдув на корпусе. Либо как временная мера — откройте боковую крышку. Постоянно высокая температура в корпусе — пагубно влияет на строк службы всех компонентов начиная материнской платой, заканчивая .

Разъёмы.

Когда вы уже определились с видеокартой, внимание стоит обратить и на разъёмы.


Если у вас монитор с матрицей P- или с поддержкой 30 битного цвета (1.07 млрд. ), то вам обязательно понадобится DisplayPort на видеокарте для раскрытия его потенциала. Только DisplayPort поддерживает передачу 30 битной глубины цвета.

* достоверно неизвестно, поддерживают ли передачу 30 бит, игровые видеокарты, но наличие DisplayPort говорит о возможной поддержке. В спецификациях поддержка, заявлена только у профессиональных видеокарт AMD FirePro и NVidia Quadro .

Очень хорошо если есть . Никогда не знаешь, что может пригодиться и лучше быть к этому готовым. Вдруг вам понадобится вывести сигнал с ресивера. Кстати, HDMI и DVI совместимы через простой переходник и практически без проблем.

Выводы.

На этом всё. Не успели начать, уже заканчиваем. Так как статья описывает главные, общие понятия, она получилась не слишком длинной.

Тем не менее, все наиболее важные моменты для выбора качественной и производительной видеокарты описаны.

1. Вопрос веры.

3. Количество исполнительных блоков (TMU, ROP и т.д).

4. Объём, частота и разрядность шины памяти.

5. Узнать подойдёт ли карта по уровню энергопотребления.

5. Система охлаждения.

6. Разъёмы.

Надеемся, с этими знаниями, вы сможете в соответствии с вашими требованиями, выбрать видеокарту.

Удачного вам выбора!


Автоматизация учета банковских операций и ее реализация в программе "1С Бухгалтерия"

Если всю деятельность компании можно разделить на бизнес процессы, то и процессы можно разделить на более мелкие составляющие. В методологии построения бизнес процессов это называется декомпозицией...

Внутренние и периферийные устройства ПК

Изучение дискретной модели популяции при помощи программы Model Vision Studium

Основным « строительным элементом » описания в MVS является блок. Блок - это некоторый активный объект, функционирующий параллельно и независимо от других объектов непрерывном времени. Блок является ориентированным блоком...

Использование LMS Moodle в учебном процессе

Для любого курса обязательно наличие центральной области. Левой и правой колонки с блоками может не быть. Но различные блоки, входящие в состав системы управления обучением Moodle, увеличивают функциональность...

Исследование возможностей преподавателя в системе дистанционного обучения Moodle

Для добавления новых ресурсов, элементов, блоков или редактирования имеющихся в вашем курсе нажмите кнопку Редактировать, расположенную в блоке управления. Общий вид окна курса в режиме редактирования представлен на рисунке 2.5: Рисунок 2...

Моделирование при разработке программного обеспечения

Словарь языка UML включает три вида строительных блоков: сущности; отношения; диаграммы. Сущности - это абстракции, являющиеся основными элементами модели...

Моделирование работы в библиотеке

Операторы - блоки формируют логику модели. В GPSS/PC имеется около 50 различных видов блоков, каждый из которых выполняет свою конкретную функцию. За каждым из таких блоков стоит соответствующая подпрограмма транслятора...

Основные возможности CSS3

Можно оригинально оформить текст с помощью разнообразных разговорных блоков, которые, опять таки, сделаны на основе CSS3 технологий. (Рис 5.) Рис 5...

Основные возможности CSS3

Эффект полупрозрачности элемента хорошо заметен на фоновом рисунке и получил распространении в разных операционных системах, потому что смотрится стильно и красиво...

Подготовка текстового документа в соответствии с СТП 01-01

Блоки (платы) расширения или карты (Card), как их иногда называют, могут использоваться для обслуживания устройств, подключаемых к IBM PC. Они могут использоваться для подключения дополнительных устройств (адаптеров дисплея, контроллера дисков и т.п.)...

Поломка и ремонт видеокарты

Эти блоки работают совместно с шейдерными процессорами всех указанных типов, ими осуществляется выборка и фильтрация текстурных данных, необходимых для построения сцены...

Программа регистрации процесса производства для автоматизированной системы управления предприятием электронной промышленности

Различают 11 типов блоков, из которых может быть изготовлена конкретная MES система для того или иного производства...

Разработка программного комплекса расчета компенсаций по капитальному ремонту

На самом низшем уровне гранулярности данные базы данных Oracle хранятся в блоках данных. Один блок данных соответствует определенному числу байтов физического пространства на диске...

Розробка апаратно-програмного забезпечення системи управління транспортними платформами в Simatic Step-7

Системні блоки є компонентами операційної системи. Вони можуть містити програми (системні функції, SFC) або дані (системні блоки даних, SDB). Системні блоки надають доступ до важливих системних функцій...

Устройства, входящие в состав ЭВМ

Блоки (платы) расширения или карты (Card), как их иногда называют, могут использоваться для обслуживания устройств, подключаемых к IBM PC. Они могут использоваться для подключения дополнительных устройств (адаптеров дисплея, контроллера дисков и т.п.)...

Современные графические процессоры содержат множество функциональных блоков, от количества и характеристик которых зависит и итоговая скорость рендеринга, влияющая на комфортность игры. По сравнительному количеству этих блоков в разных видеочипах можно примерно оценить, насколько быстр тот или иной GPU. Характеристик у видеочипов довольно много, в этом разделе мы рассмотрим лишь самые важные из них.

Тактовая частота видеочипа

Рабочая частота GPU обычно измеряется в мегагерцах, т. е. миллионах тактов в секунду. Эта характеристика прямо влияет на производительность видеочипа — чем она выше, тем больший объем работы GPU может выполнить в единицу времени, обработать большее количество вершин и пикселей. Пример из реальной жизни: частота видеочипа, установленного на плате Radeon HD 6670 равна 840 МГц, а точно такой же чип в модели Radeon HD 6570 работает на частоте в 650 МГц. Соответственно будут отличаться и все основные характеристики производительности. Но далеко не только рабочая частота чипа определяет производительность, на его скорость сильно влияет и сама графическая архитектура: устройство и количество исполнительных блоков, их характеристики и т. п.

В некоторых случаях тактовая частота отдельных блоков GPU отличается от частоты работы остального чипа. То есть, разные части GPU работают на разных частотах, и сделано это для увеличения эффективности, ведь некоторые блоки способны работать на повышенных частотах, а другие — нет. Такими GPU комплектуется большинство видеокарт GeForce от NVIDIA. Из свежих примеров приведём видеочип в модели GTX 580, большая часть которого работает на частоте 772 МГц, а универсальные вычислительные блоки чипа имеют повышенную вдвое частоту — 1544 МГц.

Скорость заполнения (филлрейт)

Скорость заполнения показывает, с какой скоростью видеочип способен отрисовывать пиксели. Различают два типа филлрейта: пиксельный (pixel fill rate) и текстурный (texel rate). Пиксельная скорость заполнения показывает скорость отрисовки пикселей на экране и зависит от рабочей частоты и количества блоков ROP (блоков операций растеризации и блендинга), а текстурная — это скорость выборки текстурных данных, которая зависит от частоты работы и количества текстурных блоков.

Например, пиковый пиксельный филлрейт у GeForce GTX 560 Ti равен 822 (частота чипа) × 32 (количество блоков ROP) = 26304 мегапикселей в секунду, а текстурный — 822 × 64 (кол-во блоков текстурирования) = 52608 мегатекселей/с. Упрощённо дело обстоит так — чем больше первое число — тем быстрее видеокарта может отрисовывать готовые пиксели, а чем больше второе — тем быстрее производится выборка текстурных данных.

Хотя важность "чистого" филлрейта в последнее время заметно снизилась, уступив скорости вычислений, эти параметры всё ещё остаются весьма важными, особенно для игр с несложной геометрией и сравнительно простыми пиксельными и вершинными вычислениями. Так что оба параметра остаются важными и для современных игр, но они должны быть сбалансированы. Поэтому количество блоков ROP в современных видеочипах обычно меньше количества текстурных блоков.

Количество вычислительных (шейдерных) блоков или процессоров

Пожалуй, сейчас эти блоки — главные части видеочипа. Они выполняют специальные программы, известные как шейдеры. Причём, если раньше пиксельные шейдеры выполняли блоки пиксельных шейдеров, а вершинные — вершинные блоки, то с некоторого времени графические архитектуры были унифицированы, и эти универсальные вычислительные блоки стали заниматься различными расчётами: вершинными, пиксельными, геометрическими и даже универсальными вычислениями.

Впервые унифицированная архитектура была применена в видеочипе игровой консоли Microsoft Xbox 360, этот графический процессор был разработан компанией ATI (впоследствии купленной AMD). А в видеочипах для персональных компьютеров унифицированные шейдерные блоки появились ещё в плате NVIDIA GeForce 8800. И с тех пор все новые видеочипы основаны на унифицированной архитектуре, которая имеет универсальный код для разных шейдерных программ (вершинных, пиксельных, геометрических и пр.), и соответствующие унифицированные процессоры могут выполнить любые программы.

По числу вычислительных блоков и их частоте можно сравнивать математическую производительность разных видеокарт. Большая часть игр сейчас ограничена производительностью исполнения пиксельных шейдеров, поэтому количество этих блоков весьма важно. К примеру, если одна модель видеокарты основана на GPU с 384 вычислительными процессорами в его составе, а другая из той же линейки имеет GPU с 192 вычислительными блоками, то при равной частоте вторая будет вдвое медленнее обрабатывать любой тип шейдеров, и в целом будет настолько же производительнее.

Хотя, исключительно на основании одного лишь количества вычислительных блоков делать однозначные выводы о производительности нельзя, обязательно нужно учесть и тактовую частоту и разную архитектуру блоков разных поколений и производителей чипов. Только по этим цифрам можно сравнивать чипы только в пределах одной линейки одного производителя: AMD или NVIDIA. В других же случаях нужно обращать внимание на тесты производительности в интересующих играх или приложениях.

Блоки текстурирования (TMU)

Эти блоки GPU работают совместно с вычислительными процессорами, ими осуществляется выборка и фильтрация текстурных и прочих данных, необходимых для построения сцены и универсальных вычислений. Число текстурных блоков в видеочипе определяет текстурную производительность — то есть скорость выборки текселей из текстур.

Хотя в последнее время больший упор делается на математические расчеты, а часть текстур заменяется процедурными, нагрузка на блоки TMU и сейчас довольно велика, так как кроме основных текстур, выборки необходимо делать и из карт нормалей и смещений, а также внеэкранных буферов рендеринга render target.

С учётом упора многих игр в том числе и в производительность блоков текстурирования, можно сказать, что количество блоков TMU и соответствующая высокая текстурная производительность также являются одними из важнейших параметров для видеочипов. Особенное влияние этот параметр оказывает на скорость рендеринга картинки при использовании анизотропной фильтрации, требующие дополнительных текстурных выборок, а также при сложных алгоритмах мягких теней и новомодных алгоритмах вроде Screen Space Ambient Occlusion.

Блоки операций растеризации (ROP)

Блоки растеризации осуществляют операции записи рассчитанных видеокартой пикселей в буферы и операции их смешивания (блендинга). Как мы уже отмечали выше, производительность блоков ROP влияет на филлрейт и это — одна из основных характеристик видеокарт всех времён. И хотя в последнее время её значение также несколько снизилось, всё ещё попадаются случаи, когда производительность приложений зависит от скорости и количества блоков ROP. Чаще всего это объясняется активным использованием фильтров постобработки и включенным антиалиасингом при высоких игровых настройках.

Ещё раз отметим, что современные видеочипы нельзя оценивать только числом разнообразных блоков и их частотой. Каждая серия GPU использует новую архитектуру, в которой исполнительные блоки сильно отличаются от старых, да и соотношение количества разных блоков может отличаться. Так, блоки ROP компании AMD в некоторых решениях могут выполнять за такт больше работы, чем блоки в решениях NVIDIA, и наоборот. То же самое касается и способностей текстурных блоков TMU — они разные в разных поколениях GPU разных производителей, и это нужно учитывать при сравнении.

Геометрические блоки

Вплоть до последнего времени, количество блоков обработки геометрии было не особенно важным. Одного блока на GPU хватало для большинства задач, так как геометрия в играх была довольно простой и основным упором производительности были математические вычисления. Важность параллельной обработки геометрии и количества соответствующих блоков резко выросли при появлении в DirectX 11 поддержки тесселяции геометрии. Компания NVIDIA первой распараллелила обработку геометрических данных, когда в её чипах семейства GF1xx появилось по несколько соответстующих блоков. Затем, похожее решение выпустила и AMD (только в топовых решениях линейки Radeon HD 6700 на базе чипов Cayman).

В рамках этого материала мы не будем вдаваться в подробности, их можно прочитать в базовых материалах нашего сайта, посвященных DirectX 11-совместимым графическим процессорам. В данном случае для нас важно то, что количество блоков обработки геометрии очень сильно влияет на общую производительность в самых новых играх, использующих тесселяцию, вроде Metro 2033, HAWX 2 и Crysis 2 (с последними патчами). И при выборе современной игровой видеокарты очень важно обращать внимание и на геометрическую производительность.

Объём видеопамяти

Собственная память используется видеочипами для хранения необходимых данных: текстур, вершин, данных буферов и т. п. Казалось бы, что чем её больше — тем всегда лучше. Но не всё так просто, оценка мощности видеокарты по объему видеопамяти — это наиболее распространенная ошибка! Значение объёма видеопамяти неопытные пользователи переоценивают чаще всего, до сих пор используя именно его для сравнения разных моделей видеокарт. Оно и понятно — этот параметр указывается в списках характеристик готовых систем одним из первых, да и на коробках видеокарт его пишут крупным шрифтом. Поэтому неискушённому покупателю кажется, что раз памяти в два раза больше, то и скорость у такого решения должна быть в два раза выше. Реальность же от этого мифа отличается тем, что память бывает разных типов и характеристик, а рост производительности растёт лишь до определенного объёма, а после его достижения попросту останавливается.

Так, в каждой игре и при определённых настройках и игровых сценах есть некий объём видеопамяти, которого хватит для всех данных. И хоть ты 4 ГБ видеопамяти туда поставь — у неё не появится причин для ускорения рендеринга, скорость будут ограничивать исполнительные блоки, о которых речь шла выше, а памяти просто будет достаточно. Именно поэтому во многих случаях видеокарта с 1,5 ГБ видеопамяти работает с той же скоростью, что и карта с 3 ГБ (при прочих равных условиях).

Ситуации, когда больший объём памяти приводит к видимому увеличению производительности, существуют — это очень требовательные игры, особенно в сверхвысоких разрешениях и при максимальных настройках качества. Но такие случаи встречаются не всегда и объём памяти учитывать нужно, не забывая о том, что выше определённого объема производительность просто уже не вырастет. Есть у чипов памяти и более важные параметры, такие как ширина шины памяти и её рабочая частота. Эта тема настолько обширна, что подробнее о выборе объёма видеопамяти мы ещё остановимся в шестой части нашего материала.

Ширина шины памяти

Ширина шины памяти является важнейшей характеристикой, влияющей на пропускную способность памяти (ПСП). Большая ширина позволяет передавать большее количество информации из видеопамяти в GPU и обратно в единицу времени, что положительно влияет на производительность в большинстве случаев. Теоретически, по 256-битной шине можно передать в два раза больше данных за такт, чем по 128-битной. На практике разница в скорости рендеринга хоть и не достигает двух раз, но весьма близка к этому во многих случаях с упором в пропускную способность видеопамяти.

Современные игровые видеокарты используют разную ширину шины: от 64 до 384 бит (ранее были чипы и с 512-битной шиной), в зависимости от ценового диапазона и времени выпуска конкретной модели GPU. Для самых дешёвых видеокарт уровня low-end чаще всего используется 64 и реже 128 бит, для среднего уровня от 128 до 256 бит, ну а видеокарты из верхнего ценового диапазона используют шины от 256 до 384 бит шириной. Ширина шины уже не может расти чисто из-за физических ограничений — размер кристалла GPU недостаточен для разводки более чем 512-битной шины, и это обходится слишком дорого. Поэтому наращивание ПСП сейчас осуществляется при помощи использования новых типов памяти (см. далее).

Частота видеопамяти

Ещё одним параметром, влияющим на пропускную способность памяти, является её тактовая частота. А повышение ПСП часто напрямую влияет на производительность видеокарты в 3D-приложениях. Частота шины памяти на современных видеокартах бывает от 533(1066, с учётом удвоения) МГц до 1375(5500, с учётом учетверения) МГц, то есть, может отличаться более чем в пять раз! И так как ПСП зависит и от частоты памяти, и от ширины ее шины, то память с 256-битной шиной, работающая на частоте 800(3200) МГц, будет иметь бо́льшую пропускную способность по сравнению с памятью, работающей на 1000(4000) МГц со 128-битной шиной.

Особенное внимание на параметры ширины шины памяти, её типа и частоты работы следует уделять при покупке сравнительно недорогих видеокарт, на многие из которых ставят лишь 128-битные или даже 64-битные интерфейсы, что крайне негативно сказывается на их производительности. Вообще, покупка видеокарты с использованием 64-битной шины видеопамяти для игрового ПК нами не рекомендуется вовсе. Желательно отдать предпочтение хотя бы среднему уровню минимум со 128- или 192-битной шиной.

Типы памяти

На современные видеокарты устанавливается сразу несколько различных типов памяти. Старую SDR-память с одинарной скоростью передачи уже нигде не встретишь, но и современные типы памяти DDR и GDDR имеют значительно отличающиеся характеристики. Различные типы DDR и GDDR позволяют передавать в два или четыре раза большее количество данных на той же тактовой частоте за единицу времени, и поэтому цифру рабочей частоты зачастую указывают удвоенной или учетверённой, умножая на 2 или 4. Так, если для DDR-памяти указана частота 1400 МГц, то эта память работает на физической частоте в 700 МГц, но указывают так называемую «эффективную» частоту, то есть ту, на которой должна работать SDR-память, чтобы обеспечить такую же пропускную способность. То же самое с GDDR5, но частоту тут даже учетверяют.

Основное преимущество новых типов памяти заключается в возможности работы на больших тактовых частотах, а соответственно — в увеличении пропускной способности по сравнению с предыдущими технологиями. Это достигается за счет увеличенных задержек, которые, впрочем, не так важны для видеокарт. Первой платой, использующей память DDR2, стала NVIDIA GeForce FX 5800 Ultra. С тех пор технологии графической памяти значительно продвинулись, был разработан стандарт GDDR3, который близок к спецификациям DDR2, с некоторыми изменениями специально для видеокарт.

GDDR3 — это специально предназначенная для видеокарт память, с теми же технологиями, что и DDR2, но с улучшенными характеристиками потребления и тепловыделения, что позволило создать микросхемы, работающие на более высоких тактовых частотах. Несмотря на то, что стандарт был разработан в компании ATI, первой видеокартой, её использующей, стала вторая модификация NVIDIA GeForce FX 5700 Ultra, а следующей стала GeForce 6800 Ultra.

GDDR4 — это дальнейшее развитие «графической» памяти, работающее почти в два раза быстрее, чем GDDR3. Основными отличиями GDDR4 от GDDR3, существенными для пользователей, являются в очередной раз повышенные рабочие частоты и сниженное энергопотребление. Технически, память GDDR4 не сильно отличается от GDDR3, это дальнейшее развитие тех же идей. Первыми видеокартами с чипами GDDR4 на борту стали ATI Radeon X1950 XTX, а у компании NVIDIA продукты на базе этого типа памяти не выходили вовсе. Преимущества новых микросхем памяти перед GDDR3 в том, что энергопотребление модулей может быть примерно на треть ниже. Это достигается за счет более низкого номинального напряжения для GDDR4.

Впрочем, GDDR4 не получила широкого распространения даже в решениях AMD. Начиная с GPU семейства RV7x0, контроллерами памяти видеокарт поддерживается новый тип памяти GDDR5, работающий на эффективной учетверённой частоте до 5,5 ГГц и выше (теоретически возможны частоты до 7 ГГц), что даёт пропускную способность до 176 ГБ/с с применением 256-битного интерфейса. Если для повышения ПСП у памяти GDDR3/GDDR4 приходилось использовать 512-битную шину, то переход на использование GDDR5 позволил увеличить производительность вдвое при меньших размерах кристаллов и меньшем потреблении энергии.

Видеопамять самых современных типов — это GDDR3 и GDDR5, она отличается от DDR некоторыми деталями и также работает с удвоенной/учетверённой передачей данных. В этих типах памяти применяются некоторые специальные технологии, позволяющие поднять частоту работы. Так, память GDDR2 обычно работает на более высоких частотах по сравнению с DDR, GDDR3 — на еще более высоких, а GDDR5 обеспечивает максимальную частоту и пропускную способность на данный момент. Но на недорогие модели до сих пор ставят «неграфическую» память DDR3 со значительно меньшей частотой, поэтому нужно выбирать видеокарту внимательнее.

Скорость заполнения показывает, с какой скоростью видеочип способен отрисовывать пиксели. Различают два типа филлрейта: пиксельный (pixel fill rate) и текстурный (texel rate). Пиксельная скорость заполнения показывает скорость отрисовки пикселей на экране и зависит от рабочей частоты и количества блоков ROP (блоков операций растеризации и блендинга), а текстурная - это скорость выборки текстурных данных, которая зависит от частоты работы и количества текстурных блоков.

Например, пиксельный филлрейт у GeForce GTX 275 равен 633 (частота чипа) * 28 (количество блоков ROP) = 17724 мегапикселей в секунду, а текстурный - 633 * 80 (кол-во блоков текстурирования) = 50640 мегатекселей/с. Чем больше первое число - тем быстрее видеокарта может отрисовывать готовые пиксели, а чем больше второе - тем быстрее производится выборка текстурных данных. Оба параметра важны для современных игр, но они должны быть сбалансированы. Именно поэтому количество блоков ROP в современных чипах обычно меньше количества текстурных блоков.

Количество блоков-шейдеров (пиксельные, вершинные).

Вершинный шейдер отвечает за построение вершин объекта. Определяют возможности современных карт по обработке графических примитивных объектов, и в общем производительность самой карты. Пиксельный шейдер более актуальный чем вершинный поэтому количество их обычно больше. Разделение на пиксельные и вершинные в последнее время (с выходом Direct 10) теряют свою актуальность. Все они заменяются едиными унифицированными шейдерными блоками, кот зависят от конкретной ситуации. Они исп роль как пиксельных, так и вершинных шейдеров, а так же геометрических, кот появились в Direct 10.

Количество блоков текстурирования ТМU

Количество блоков текстурирования ТМU, которые определяют текстурную производительность или скорость выборки и наложения текстур. Особенно это актуальности при анизотропной фильтрации. Наибольшее значение блоки ТМU имеют в старых играх. Сейчас они практически потеряли свою актуальность, т.к. пропускная способность шины памяти в совр коп-рах не хватает для того, чтобы нормально функционировали высокопроизводительные карты. Большинство и них оснащены собственной памятью, которая требуется для хранения необходимых данных, а именно текстур, вершин и т.д.

Блоки операций растеризации (ROP)

Блоки растеризации осуществляют операции записи рассчитанных видеокартой пикселей в буферы и операции их смешивания (блендинга). Как мы уже отмечали выше, производительность блоков ROP влияет на филлрейт и это - одна из основных характеристик видеокарт всех времён. И хотя в последнее время её значение также несколько снизилось, всё ещё попадаются случаи, когда производительность приложений зависит от скорости и количества блоков ROP. Чаще всего это объясняется активным использованием фильтров постобработки и включенным антиалиасингом при высоких игровых настройках.

Ещё раз отметим, что современные видеочипы нельзя оценивать только числом разнообразных блоков и их частотой. Каждая серия GPU использует новую архитектуру, в которой исполнительные блоки сильно отличаются от старых, да и соотношение количества разных блоков может отличаться. Так, блоки ROP компании AMD в некоторых решениях могут выполнять за такт больше работы, чем блоки в решениях NVIDIA, и наоборот. То же самое касается и способностей текстурных блоков TMU - они разные в разных поколениях GPU разных производителей, и это нужно учитывать при сравнении.

Геометрические блоки

Вплоть до последнего времени, количество блоков обработки геометрии было не особенно важным. Одного блока на GPU хватало для большинства задач, так как геометрия в играх была довольно простой и основным упором производительности были математические вычисления. Важность параллельной обработки геометрии и количества соответствующих блоков резко выросли при появлении в DirectX 11 поддержки тесселяции геометрии. Компания NVIDIA первой распараллелила обработку геометрических данных, когда в её чипах семейства GF1xx появилось по несколько соответстующих блоков. Затем, похожее решение выпустила и AMD (только в топовых решениях линейки Radeon HD 6700 на базе чипов Cayman).

Объём видеопамяти

Собственная память используется видеочипами для хранения необходимых данных: текстур, вершин, данных буферов и т. п. Казалось бы, что чем её больше - тем всегда лучше. Но не всё так просто, оценка мощности видеокарты по объему видеопамяти - это наиболее распространенная ошибка! Значение объёма видеопамяти неопытные пользователи переоценивают чаще всего, до сих пор используя именно его для сравнения разных моделей видеокарт. Оно и понятно - этот параметр указывается в списках характеристик готовых систем одним из первых, да и на коробках видеокарт его пишут крупным шрифтом. Поэтому неискушённому покупателю кажется, что раз памяти в два раза больше, то и скорость у такого решения должна быть в два раза выше. Реальность же от этого мифа отличается тем, что память бывает разных типов и характеристик, а рост производительности растёт лишь до определенного объёма, а после его достижения попросту останавливается.

Есть у чипов памяти и более важные параметры, такие как ширина шины памяти и её рабочая частота.

Ширина шины памяти.

Ширина шины памяти является важнейшей характеристикой, влияющей на пропускную способность памяти (ПСП). Большая ширина позволяет передавать большее количество информации из видеопамяти в GPU и обратно в единицу времени, что положительно влияет на производительность в большинстве случаев. Теоретически, по 256-битной шине можно передать в два раза больше данных за такт, чем по 128-битной. На практике разница в скорости рендеринга хоть и не достигает двух раз, но весьма близка к этому во многих случаях с упором в пропускную способность видеопамяти.

Современные игровые видеокарты используют разную ширину шины: от 64 до 384 бит (ранее были чипы и с 512-битной шиной), в зависимости от ценового диапазона и времени выпуска конкретной модели GPU. Для самых дешёвых видеокарт уровня low-end чаще всего используется 64 и реже 128 бит, для среднего уровня от 128 до 256 бит, ну а видеокарты из верхнего ценового диапазона используют шины от 256 до 384 бит шириной. Ширина шины уже не может расти чисто из-за физических ограничений - размер кристалла GPU недостаточен для разводки более чем 512-битной шины, и это обходится слишком дорого. Поэтому наращивание ПСП сейчас осуществляется при помощи использования новых типов памяти (см. далее).

Частота видеопамяти

Ещё одним параметром, влияющим на пропускную способность памяти, является её тактовая частота. А повышение ПСП часто напрямую влияет на производительность видеокарты в 3D-приложениях. Частота шины памяти на современных видеокартах бывает от 533(1066, с учётом удвоения) МГц до 1375(5500, с учётом учетверения) МГц, то есть, может отличаться более чем в пять раз! И так как ПСП зависит и от частоты памяти, и от ширины ее шины, то память с 256-битной шиной, работающая на частоте 800(3200) МГц, будет иметь бо́льшую пропускную способность по сравнению с памятью, работающей на 1000(4000) МГц со 128-битной шиной.

Типы памяти

На современные видеокарты устанавливается сразу несколько различных типов памяти. Старую SDR-память с одинарной скоростью передачи уже нигде не встретишь, но и современные типы памяти DDR и GDDR имеют значительно отличающиеся характеристики. Различные типы DDR и GDDR позволяют передавать в два или четыре раза большее количество данных на той же тактовой частоте за единицу времени, и поэтому цифру рабочей частоты зачастую указывают удвоенной или учетверённой, умножая на 2 или 4. Так, если для DDR-памяти указана частота 1400 МГц, то эта память работает на физической частоте в 700 МГц, но указывают так называемую «эффективную» частоту, то есть ту, на которой должна работать SDR-память, чтобы обеспечить такую же пропускную способность. То же самое с GDDR5, но частоту тут даже учетверяют.

Основное преимущество новых типов памяти заключается в возможности работы на больших тактовых частотах, а соответственно - в увеличении пропускной способности по сравнению с предыдущими технологиями. Это достигается за счет увеличенных задержек, которые, впрочем, не так важны для видеокарт.

Отсюда следует что чем больше объем памяти видеокарты, тем выше производительность. Важные параметры – является рабочая частота шины и ширина шины. Большая ширина шины позволяет передавать большее количество информации в единицу времени из видеопамяти графический центральный процессор GPU и обратно. Что обеспечивает большую производительность видеокарты при равных условиях. Ширина шины составляет бюджетной видеокарты – 64-128 бит, для карт среднего уровня 128-256 бит, для карт высокого уровня – 256-512 бит.


1.2 Описание работы и структурной схемы устройства

При построении изображения, после обработки видео сигнала центральным процессором, данные поступают на шину данных видеокарты. Далее данные отправляются в блок параллельного выполнения команд, а уже из него в GPU(графический процессор) в котором выполняются следующие дейтсвия:

· Трансформация - простые объекты чаще всего необходимо определенным образом изменить или трансформировать чтобы получился более естественный объект, или имитировать его перемещение в пространстве. Для этого координаты вершин граней объекта (vertex - вертекс) пересчитывают с использованием операций матричной алгебры и геометрических преобразований. В видеокартах для этого интенсивно используется геометрический сопроцессор .

· Расчет освещенности и затенения - для того чтобы объект был виден на экране, нужно рассчитать освещенность и затенение каждого элементарного прямоугольника или треугольника. Причем необходимо имитировать реальное распределение освещенности, т. е. требуется скрыть изменения освещенности между прямоугольниками или треугольниками – этим занимается Блок растеризации.

· Наложение текстур - чтобы создать реалистичное изображение, на каждую элементарную поверхность накладывают текстуру, имитирующую реальную поверхность. Текстуры хранятся в памяти в виде растровых картинок.

· Коррекция дефектов - смоделированные линии и границы объектов, если они не вертикальны или горизонтальны, на экране выглядят угловатыми, поэтому проводят коррекцию изображения, называемую антиалиасинг(anti-aliasing );

После обработки GPU объекты обрабатываются блоком «Z-буфер»:

· Проецирование - трехмерный объект преобразуется в двумерный, но при этом запоминаются расстояния вершин граней до поверхности экрана (координата Z, Z-буфер), на который проецируется объект;

· Удаление скрытых поверхностей - из двумерной проекции трехмерного объекта удаляются все невидимые поверхности.

После расчета всех точек кадра информация о каждом пикселе перемещается в видеопамять.

В блоке управления палитрой и наложением изображения выполняется интерполяция недостающих цветов - если при моделировании объектов использовалось другое количество цветов, нежели чем в текущем режиме видеокарты, то необходимо рассчитать недостающие цвета или удалить избыточные.

Если видеокарта подключена к монитору на основе Электронно лучевой трубки тогда данные поступают в ЦАП(цифро-аналоговый преобразователь) в котором происходит преобразование цифровых сигналов в аналоговые RGB сигналы понятные монитору.

Если видеокарта подключена к цифровому монитору то информация изображения конвертируется в формат экрана монитора.

Количество вычислительных (шейдерных) блоков или процессоров

Пожалуй, сейчас эти блоки - главные части видеочипа. Они выполняют специальные программы, известные как шейдеры. Причём, если раньше пиксельные шейдеры выполняли блоки пиксельных шейдеров, а вершинные - вершинные блоки, то с некоторого времени графические архитектуры были унифицированы, и эти универсальные вычислительные блоки стали заниматься различными расчётами: вершинными, пиксельными, геометрическими и даже универсальными вычислениями.

Впервые унифицированная архитектура была применена в видеочипе игровой консоли Microsoft Xbox 360, этот графический процессор был разработан компанией ATI (впоследствии купленной AMD). А в видеочипах для персональных компьютеров унифицированные шейдерные блоки появились ещё в плате NVIDIA GeForce 8800. И с тех пор все новые видеочипы основаны на унифицированной архитектуре, которая имеет универсальный код для разных шейдерных программ (вершинных, пиксельных, геометрических и пр.), и соответствующие унифицированные процессоры могут выполнить любые программы.

По числу вычислительных блоков и их частоте можно сравнивать математическую производительность разных видеокарт. Большая часть игр сейчас ограничена производительностью исполнения пиксельных шейдеров, поэтому количество этих блоков весьма важно. К примеру, если одна модель видеокарты основана на GPU с 384 вычислительными процессорами в его составе, а другая из той же линейки имеет GPU с 192 вычислительными блоками, то при равной частоте вторая будет вдвое медленнее обрабатывать любой тип шейдеров, и в целом будет настолько же производительнее.

Хотя, исключительно на основании одного лишь количества вычислительных блоков делать однозначные выводы о производительности нельзя, обязательно нужно учесть и тактовую частоту и разную архитектуру блоков разных поколений и производителей чипов. Только по этим цифрам можно сравнивать чипы только в пределах одной линейки одного производителя: AMD или NVIDIA. В других же случаях нужно обращать внимание на тесты производительности в интересующих играх или приложениях.

Блоки текстурирования (TMU)

Эти блоки GPU работают совместно с вычислительными процессорами, ими осуществляется выборка и фильтрация текстурных и прочих данных, необходимых для построения сцены и универсальных вычислений. Число текстурных блоков в видеочипе определяет текстурную производительность - то есть скорость выборки текселей из текстур.

Хотя в последнее время больший упор делается на математические расчеты, а часть текстур заменяется процедурными, нагрузка на блоки TMU и сейчас довольно велика, так как кроме основных текстур, выборки необходимо делать и из карт нормалей и смещений, а также внеэкранных буферов рендеринга render target.

С учётом упора многих игр в том числе и в производительность блоков текстурирования, можно сказать, что количество блоков TMU и соответствующая высокая текстурная производительность также являются одними из важнейших параметров для видеочипов. Особенное влияние этот параметр оказывает на скорость рендеринга картинки при использовании анизотропной фильтрации, требующие дополнительных текстурных выборок, а также при сложных алгоритмах мягких теней и новомодных алгоритмах вроде Screen Space Ambient Occlusion.

Блоки операций растеризации (ROP)

Блоки растеризации осуществляют операции записи рассчитанных видеокартой пикселей в буферы и операции их смешивания (блендинга). Как мы уже отмечали выше, производительность блоков ROP влияет на филлрейт и это - одна из основных характеристик видеокарт всех времён. И хотя в последнее время её значение также несколько снизилось, всё ещё попадаются случаи, когда производительность приложений зависит от скорости и количества блоков ROP. Чаще всего это объясняется активным использованием фильтров постобработки и включенным антиалиасингом при высоких игровых настройках.

Рекомендуем почитать

Наверх