Особенности репродукции вирусов. Этапы развития инфекционного процесса

Решение проблем 09.04.2020

Стратегия генома ДНК-содержащих вирусов (за исключением вирусов семейства Hepadnaviridae) сходна в основных чертах со стратегией генома клетки, поскольку реализация генетической информации происходит по схеме ДНК --> мРНК --> белок. Тем не менее сама геномная ДНК у вирусов намного разнообразнее, чем ДНК клетки. У многих вирусов он представлен как у клетки - линейной двунитевой ДНК. Однако у ряда семейств геномная ДНК представляет собой однонитевую ДНК или двунитевую кольцевую. В этих случаях репликация вирусной ДНК имеет ряд особенностей. У вирусов, содержащих однонитевую ДНК ( Parvoviridae), геномная ДНК имеет на конце аутокомплементарный участок, который при репликации образует двунитевую шпильку, с которой и начинается синтез комплементарной нити ДНК. Даже у некоторых вирусов, содержащих линейную двунитевую ДНК, механизм репликации отличается от механизма репликации клеточной ДНК. Например, у вирусов семейства Adenoviridae он осуществляется не посредством синтеза коротких фрагментов на двух нитях ДНК ( фрагменты Оказаки), как в клетке, а посредством синтеза полноразмерной нити вирусной ДНК с вытеснением одной из нитей геномной ДНК из двойной спирали.

ДНК-содержащие вирусы различаются по клеточной локализации репликации и транскрипции вирусного генома. У большинства ДНК-содержащих вирусов эукариот эти процессы протекают в клеточном ядре. У вирусов семейства Herpesviridae вирусная ДНК проникает в ядро, где подвергается транскрипции, которую осуществляет клеточный фермент - ДНК-зависимая РНК-полимераза II . Но при этом транскрибируются лишь некоторые вирусные гены. Синтезированные молекулы вирусной мРНК транспортируются в цитоплазму, транслируются рибосомами, и образовавшиеся вирусные белки переносятся в ядро. Некоторые из них обладают функцией деблокирования вирусных генов, в результате чего еще одна группа генов становится доступной для транскрипции. Среди белков, кодируемых этими генами, - вирусная ДНК-полимераза . Она осуществляет репликацию ДНК. Новосинтезированная ДНК полностью доступна для транскрипции. Такая последовательность событий называется каскадной регуляцией. Использование клеточной РНК-полимеразы II для транскрипции, как и синтез собственной ДНК-полимеразы, вообще характерно для ДНК-содержащих вирусов, имеющих ядерную локализацию репликации и транскрипции. Напротив, у вирусов семейства Poxviridae , у которых репликация и транскрипция генома протекают в цитоплазме, оба эти процесса осуществляются вирусными ферментами, причем транскриптаза , инициирующая транскрипцию вирусного генома, присутствует в вирусной частице и вносится в клетку при заражении вместе с геномной ДНК.

Вирусы семейства Hepadnaviridae занимают особое место среди ДНК-содержащих вирусов. Их геном представлен частично двунитевой ДНК, причем концы нитей замкнуты в кольцо нековалентной связью. В ядре клетки вирусная ДНК достраивается до полного кольца клеточной ДНК-полимеразой, после чего транскрибируется клеточной РНК-полимеразой II. Часть транскриптов используется как мРНК для синтеза вирусных белков. Один из этих белков обладает функцией обратной транскриптазы , т.е. он способен синтезировать ДНК на вирусной РНК-матрице. Часть РНК-транскриптов комплементарна всей минус-цепи ДНК, т.е. содержит всю генетическую информацию вирусного генома. Эта полноразмерная, соответствующая всему геному нить РНК служит матрицей для синтеза вирусной ДНК, который осуществляется вирусной обратной транскриптазой. Таким образом, у вирусов семейства Hepadnaviridae репликация ДНК проходит через стадию, на которой вирусный геном представлен в форме РНК. Эта особенность вирусов семейства Hepadnaviridae сближает их с представителями Retroviridae , у которых тоже при репликации чередуются стадии, на которых вирусный геном присутствует поочередно: то в форме РНК, то в форме ДНК.

Приведенные примеры иллюстрируют, хотя и не исчерпывают, разнообразие стратегий, используемых вирусами в ходе их жизнедеятельности.

Взаимодействие вируса с клеткой хозяина - это сложный многоступенчатый процесс, который начинается с адсорбции вирусных частиц на рецепторах клетки хозяина и продолжается после их проникновения внутрь клетки. В результате такого взаимодействия развивается либо продуктивная, либо абортивная, либо интегративная форма клеточной инфекции. При п р.о дуктивной форме происходит размножение, точнее репродукция (лат. reproduce-воспроизводить) вируса, при абортивной - ее нарушение на одном из этапов, при интегративной - интеграция вирусной нуклеиновой кислоты в клеточный геном.

РЕПРОДУКЦИЯ ВИРУСОВ

Как отмечалось выше, вирусы являются самореплицирующейся формой, неспособной к бинарному делению, в отличие от микроорганизмов с клеточной организацией. В 50-х годах было установлено, что размножение, или репродукция, вирусов происходит путем репликации их нуклеиновой кислоты и биосинтеза белков с последующей самосборкой вириона. Этот процесс происходит в разных частях клетки - ядре или цитоплазме, вследствие чего получил название дизъюнктивного, т. е. разобщенного размножения.

Вирусная репродукция представляет собой уникальную форму выражения чужеродной (вирусной) информации в клетках человека и животных, насекомых, растений и бактерий, которая состоит в подчинении клеточных матрично-генетических механизмов вирусной информации.

1-я стадия - адсорбция - характеризуется прикреплением вириона к клеточным рецепторам, представляющим собой глико-протеины клеточной мембраны, содержащей нейраминовую кислоту. Такие рецепторы имеются у ряда клеток, в частности эритроцитов, на которых адсорбируются1 многие вирусы. Для орто- и парамиксовирусов специфическими рецепторами являются гликолипиды, содержащие сиаловую кислоту (ганглиозиды), для других - белки или липиды клеточной мембраны.

Рецепторами вирусов являются так называемые «прикрепительные» белки, располагающиеся в составе капсидов простых вирионов и суперкапсидов сложных вирионов. Они могут иметь форму нитей (фибры у аденовирусов) или шипов (глико-протеиновые образования на внешней оболочке орто- и парамиксо-, рабдо-, арено- и буньявирусов).

Первый этап адсорбции определяется неспецифическими силами межмолекулярного притяжения, второй - специфической структурной гомологией или комплементарностью рецепторов чувствительных клеток и вирусов.

2-я стадия - проникновение вируса в клетку хозяина происходит путем виропексиса и слияния мембран. Виропексис есть не что иное, как частный случай рецепторного эндоцитоза, который состоит в инвагинации участка плазматической мембраны, где имеются углубления, покрытые рецепторами снаружи, на которых адсорбируется вирус (рис. 5.3). Затем происходит образование вакуоли вокруг вируса, в составе которой он находится в цитоплазме клетки хозяина. Описанный способ проникновения вирусных частиц характерен для аденовирусов, вируса гриппа и др.

Проникновение вирусной частицы в клетку хозяина может произойти и путем слияния мембран (рис. 5.4). В этом случае вирусная оболочка сливается с плазматической мембраной клетки хозяина, в результате чего внутренние структуры («сердцевина») вириона оказываются в цитоплазме зараженной клетки, а при слиянии с ядерной мембраной - в клеточном ядре.

3-я стадия - «раздевание» вирионов - заключается в их депротеинизации и освобождении от суперкапсида и капсида, препятствующих репликации вирусной нуклеиновой кислоты. «Раздевание» вириона начинается сразу же после его прикрепления к клеточным рецепторам и продолжается в эндоцитарной вакуоли и ее слиянии с лизосомами при участии протеолитических ферментов, а также в ядерных порах и околоядерном пространстве при слиянии с ядерной мембраной.

4-я стадия заключается в транскрипции и репликации вирусных геномов. Транскрипция вирусного генома двунитевых ДНК-содержащих вирусов происходит, так же как и клеточного генома, по триаде ДНК->- иРНК->- белок (рис. 5.5, а). Различия касаются только происхождения фермента ДНК-зависимой РНК-полимеразы, необходимой для данного процесса. У вирусов, геном которых транскрибируется в цитоплазме клетки хозяина (например, вирус оспы), имеется собственная вирусспецифическая РНК-полимераза. Вирусы, геномы которых транскрибируются в ядре (папова- и аденовирусы, вирусы герпеса), используют содержащуюся там клеточную РНК-полимеразу II или III.

1. Вирусы с негативным геномом (минус-нитевые, рис. 5.5, б), к которым относятся орто-, парамиксо- и рабдовирусы (см. табл. 5.1), имеют в своем составе вирусспецифическую РНК-полимеразу или транскриптазу. Они синтезируют «РНК на матрице геномной РНК. Подобный фермент отсутствует в нормальных клетках, но синтезируется клетками, зараженными вирусами.

Он находится в составе как однонитевых, так и двунитевых РНК-содержащих вирусов.

2. У вирусов с положительным геномом к которым относятся пикорна-, тогавирусы и др.,функцию иРНК выполняет сам геном, который транслирует содержащуюся в нем информацию на рибосомы клетки хозяина.

3. Особняком стоит группа РНК-содержащих ретровирусов,в составе которых имеется обратная транскриптаза, или ревертаза. Уникальность этого фермента состоит в его способности переписывать информацию с РНК на ДНК. Этот процесс назывется обратной транскрипцией

Как отмечалось выше, количество генов в вирусном геноме весьма ограничено. Поэтому для увеличения количества вирусной информации существует своеобразный трансляционный механизм, функционирующий через иРНК, который передает значительно больше информации, чем записано в вирусной нуклеиновой кислоте. Это достигается разными путями, например при транскрипции информации с переписывающихся участков ДНК на «РНК путем сплайсинга (вырезание бессмысленных кодонов и сшивание концов), а также при считывании антикодонами гРНК одной и той же молекулы иРНК с разных нуклеоти-дов. При этом образуются новые триплеты, увеличивающие количество транслируемой информации.

Регуляция транскрипции осуществляется клеточными и вирусспецифическими механизмами. Она заключается в последовательном считывании информации с так называемых «ранних» и «поздних» генов. В первых закодирована информация для синтеза вирусспецифических ферментов транскрипции и репликации, во вторых - для синтеза капсидных белков.

Вирусспецифическая информация транслируется на рибосомы клетки хозяина, которые предварительно освобождаются от клеточных белков и собираются в вирусспецифические полисомы г-еплилацпл пируиныл геномов заключается в синтезе молекул ДНК или РНК, которые накапливаются в фондах этих нуклеиновых кислот, использующихся при сборке вирионов.

Репликация вирусной ДНК происходит на обеих нитях при участии клеточной ДНК-полимеразы. У однонитевых вирусов вначале образуется вторая нить (репликативная форма).

Репликация вирусных РНК происходит только при участии того же вирусспецифического фермента, который катализирует транскрипцию вирусного генома. У плюс-нитевых вирусов репликация РНК практически не отличается от их транскрипции. У минус-нитевых вирусов репликация отличается от транскрипции длиной образовавшихся дочерних молекул РНК. При репликации они полностью соответствуют по своей протяженности материнской нити, а при транскрипции образуются укороченные молекулы иРНК.

У ретровирусов репликация, так же как и транскрипция ДНК, происходит в составе клеточного генома при участии клеточной ДНК-полимеразы.

5-я стадия - сборка вириона - состоит прежде всего в образовании нуклеокапсидов. Поскольку синтез вирусных нуклеиновых кислот и белков в клетке происходит в разных структурах клетки, необходима транспортировка составных частей вириона в одно место сборки. При этом вирусные белки и нуклеиновые кислоты обладают способностью узнавать и самопроизвольно соединяться друг с другом. В основе самосборки простых вирионов лежит способность вирусных полипептидов соединяться в капсомеры, которые, располагаясь вокруг осей симметрии, образуют многогранник. В других случаях полипептиды в виде спирали окружают вирусную нуклеиновую кислоту.

Многие простые вирионы собираются на репликативных комплексах- мембранах эндоплазматического ретикулума."У сложных вирионов сборка нуклеокапсида начинается на репликативных комплексах, а затем продолжается на плазматической мембране, с наружной стороны которой располагаются суперкапсидные гликопротеиды. Затем гликопротеидные и примыкающие к ним с другой стороны нуклеокапсидные участки выпячиваются через клеточную мембрану, образуя почку, как это имеет место у орто- и парамиксовирусов, рабдовирусов. После отделения почки, содержащей нуклеокапсид и суперкапсидные белки, образуются свободные вирионы. Они либо через клеточную плазматическую мембрану проходят во внеклеточное пространство, либо через мембрану эндоплазматического ретикулума проникают в вакуоль эндоплазматической сети. При этом мембранные липиды обволакивают почку, вытесняя из нее белки. Многие ДНК-содержащие вирусы, например вирус герпеса, собираются в ядре клетки на ее мембране, где образуются нуклеокапсиды. Затем они отпочковываются в перинуклеарное пространство, приобретая внешнюю оболочку. Дальнейшее формирование вириона происходит в мембранах цитоплазматического ретикулума и в аппарате гольджи, куда вирус транспортируется на поверхность клетки.

6-я стадия - выход вирусных частиц из клетки - происходит двумя путями. Простые вирусы, лишенные суперкапсида, например пикорнавирусы, аденовирусы и др., вызывают деструкцию клетки и попадают во внеклеточное пространство. Другие вирусы, имеющие липопротеидную внешнюю оболочку, выходят из клетки путем почкования, в результате чего в течение длительного времени она сохраняет свою жизнеспособность. Такой путь характерен для вируса гриппа и др.

Синтез группы ранних белков (репрессоры клеточного метаболизма, вирус-специфичные полимеразы), Синтез вирус-специфичных белков и НК, Синтез структурных (поздних) белков вируса, Формирование зрелых вирионов В основе этого синтеза лежит тот же механизм, что и при синтезе белка в нормальных клетках. У РНК-содержащих пикорнавирусов функцию иРНК выполняют плюс-нити. У них односпиральная вирионная РНК транслируется с образованием одного гигантского полипептида, который затем расщепляется на отдельные функциональные белки. В синтезе полновирусного белка выражена постоянная во времени трансляция всех генов вирусной РНК. У орто-, рабдо- и парамиксовнрусов вирионная односпиральная РНК не транслируется, а транслируется комплементарная ей плюс-нить, поэтому синтез вирусных специфических белков начинается после образования вирусной иРНК (плюс-нити), которая комплементарна вирионной РНК-Минус-нити синтезируются на плюс-нити вирионной РНК-зависимой полимеразой (РНК-транскриптазой), находящейся в составе вириона в качестве структурного компонента. Синтезирующиеся вирионной полимеразой иРНК являются моноцистронными и значительно короче вирионной РНК. В процессе вирусной инфекции происходят распад клеточных полисом и образование вирусспецифических полисом. Синтез вирусспецифического белка зависит от синтеза вирусной иРНК, но и влияет на него: если синтез белка нарушен, происходит затоваривание вновь образующейся иРНК в местах ее синтеза и тормозится дальнейший ее синтез. Вирусные белки в процессе инфекции синтезируются в избыточном количестве, чем требуется для образования инфекционного вируса. Например, в клетках, инфицированных вирусами герпеса, в вирусное потомство включается только около 35% от общей массы вирусспецифических белков, синтезированных в клетках. У большинства вирусов синтез белков осуществляется в цитоплазме; относительно ядерной локализации синтеза белков некоторых вирусов существует сомнение. Известно, что вирусные белки могут синтезироваться в одних структурах, а накапливаться- в других. Механизмы, ответственные за миграцию вирусных белков в ядро, не выяснены. Известно лишь, что отсутствие аргинина в среде приводит к подавлению миграции структурных белков вируса герпеса от места их синтеза (цитоплазмы) к месту сборки вирионов (ядру), хотя синтез ДНК и белка вируса не нарушен. На разных стадиях инфекционного цикла могут преимущественно образовываться то одни, то другие группы вирусспецифических белков. Скорость их регулируется либо на уровне транскрипции (с образованием иРНК), либо на уровне трансляции (считывание иРНК на рибосомах). В зараженной клетке непропорционально накапливаются иРНК с разных вирусных генов. Механизм этой непропорциональности заложен в самой вирусной частице. Этот же механизм определяет разную эффективность образования различ- ых белков. Стандартная вирусная частица содержит одну молекулу РНК и до 10 тыс. молекул белков. Помимо структур-ных белков, в зараженной клетке могут синтезироваться и не-структурные (но кодируемые вирусной РНК) белки. Наряду с синтезом белков в клетке при репродукции вируса гриппа происходит синтез и углеводных цепей, входящих в состав гликопротеидов. Присоединение углеводов осуществляется с помощью трансфераз, которые являются клеточными ферментами. Синтез липидов также осуществляется клеткой. Вирусная оболочка формируется при включении липидов из плазматической мембраны клетки-хозяина. Синтез вирусных нуклеиновых кислот и вирусспецифических белков происходит почти одновременно и не менее чем на 1 ч опережает созревание вирусных частиц.

Этапы взаимодействия вируса с клеткой: адсорбция и проникновение бактериофагов.

Адсорбция: неспецифическая, специфическая.

Проникновение: Инъекция (остаются оболочки - «тени» фагов),Трансфекция.

+ Вопрос № 6

Этапы взаимодействия вируса с клеткой: проникновение и распространение фитопатогенных вирусов.

Адсорбция : нет. Проникновение : Контактный (через повреждения) От материнского растения к дочернему Переносчики-членистоногие. Репродукция: Синтез группы ранних белков (репрессоры клеточного метаболизма, вирус-специфичные полимеразы) Синтез вирус-специфичных белков и НК. Синтез структурных (поздних) белков вируса. Формирование зрелых вирионов Сборка: автоматическая. Выход:

Этапы взаимодействия вируса с клеткой: типы выхода вирусных частиц из клетки.

Вирусы животных : Выталкивание участков цитоплазмы. Выход отдельных вирионов или их групп. Вирусы растений: Через межклеточные соединения. Клетки продуцируют вирус, не подвергаясь лизису. Бактериофаги: После гибели клетки (литический тип).

Типы взаимодействия вируса и клетки: продуктивный тип.

Продуктивная инфекция – происходит формирование новых вирусных частиц.

Литическая – зараженная клетка может погибнуть, образовав при этом большое количество вируса. Бактериофаги, образующие в зараженных клетках новое поколение фаговых частиц, что приводит к лизису(разрушению) бактериальной клетки, называются вирулентными фагами. Некоторые бактериофаги внутри клетки хозяина не реплицируются. Вместо этого их нуклеиновая кислота включается в ДНК хозяина, образуя с ней единую молекулу, способную к репликации. Такие фаги получили названия умеренных фагов, или профагов. Профаг не оказывает литического воздействия на клетку-хозяина и при делении реплицируется вместе клеточной ДНК. Бактерии, содержащие профаг, называются лизогенными.Они проявляют устойчивость к содержащемуся в них фагу, а так же к близким к нему другим фагам. Связь профага с бактерией весьма прочная, но она может быть нарушена под воздействием индуцирующих факторов(УФ - лучами, ионизирующая радиация, химические мутагены). Персистентная – клетка продолжает жить и делиться, синтезируя небольшие количества вируса. Характерна для вирусов животных. Формы персистентной инфекции: латентная (герпес), хроническая (гепатит), медленная инфекция (ВИЧ).

Типы взаимодействия вируса и клетки: лизогенный тип.

Интегративная инфекция – геном вируса встраивается в геном клетки-хозяина и реплицируется вместе с ним. Продукции вируса нет. Вирусоносительство. Умеренные фаги – способны лизогенизировать заражаемые бактерии. Вирулентные фаги – не могут лизогенизировать бактерии. Профаг – фаг, передающийся дочерним клеткам при делении.

Классификация вирусов.

Вирусы подразделяются на 6 классов по строению нуклеиновой кислоты: Двух цепочечная ДНК, Одно цепочечная ДНК,Двух цепочечная РНК,Одно цепочечная РНК «+»цепь,Одно цепочечная РНК «-»цепь,Ретровирусы Классификация вирусов по Балтимору основывается на механизме образования мРНК. Вирусы должны синтезировать мРНК из собственных геномов для образования белков и репликации своей нуклеиновой кислоты, однако каждое семейство вирусов имеет собственный механизм осуществления этого. Вирусные геномы могут быть одноцепоченые (оц) или двухцепочечные (дц), ДНК- или РНК-содержащие, могут использовать или не использовать обратную транскриптазу. Кроме того, одноцепочечные РНК-вирусы могут иметь положительную (+) или отрицательную (-) цепь РНК в составе своего генома.

Эта система включает в себя семь основных групп: (I) Вирусы, содержащие двуцепочечную ДНК и не имеющие РНК-стадии (например, герпесвирусы, поксвирусы, паповавирусы,мимивирус). (II) Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы). В этом случае ДНК всегда положительной полярности. (III) Вирусы, содержащие двуцепочечную РНК (например, ротавирусы). (IV) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы, флавивирусы). (V) Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы). (VI) Вирусы, содержащие одноцепочечную положительную молекулу РНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретровирусы (например,ВИЧ). (VII) Вирусы, содержащие двуцепочечную ДНК и имеющие в своём жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B). Дальнейшее деление производится на основе таких признаков как структура генома (наличие сегментов, кольцевая или линейная молекула), генетическое сходство с другими вирусами, наличие липидной оболочки, таксономическая принадлежность организма-хозяина и так далее.

Репродукция вируса в клетке происходит в несколько фаз (рис.7):

Первая фаза - адсорбция вируса на поверхности клетки, чувстви­тельной к данному вирусу.

Вторая фаза - проникновение вируса в клетку хозяина путем виропексиса.

Третья фаза - «раздевание» вирионов, освобождение нуклеи­новой кислоты вируса от суперкапсида и капсида. У ряда вирусов проникновение нуклеиновой кислоты в клетку происходит путем сли­яния оболочки вириона и клетки-хозяина. В этом случае вторая и тре­тья фазы объединяются в одну.

В зависимости от типа нуклеиновой кислоты этот процесс совер­шается следующим образом.

1. Репродукция происходит в ядрх: аденовирусы, герпес,папо-вавирусы. Используют ДНК-зависимую РНК - полимеразу клетки.

2. Репродукция происходит в цитоплазме: вирусы имеют свою ДНК-зависимую РНК полимеразу. РНК-содержащие.

1. Рибовирусы с позитивным геномом (плюс-нитиевые): пикор-

на-, тога-, коронавирусы. Транскрипции нет.

РНК ->белок

2. Рибовирусы с негативным геномом (минус- нитиевые): грипп,

корь, паротит, орто-, парамиксовирусы.

(-)РНК -> иРНК -> белок (иРНК комплементарная (-)РНК) Этот процесс идет при участии специального вирусного фермен­та - вирионная РНК-зависимая PHK-полимераза (в клетке такого фермента быть не может).

3. Ретровирусы

(-)РНК -> ДНК -> иРНК ->белок (и РНК гомологична РНК) В этом случае процесс образования ДНК на базе (-)РНК возмо­жен при участии фермента - РНК-зависимой ДНК-полимеразы (об­ратной транскриптазы или ревертазы)

Четвертая фаза - синтез компонентов вириона. Нуклеиновая кис­лота вируса образуется путем репликации. На рибосомы клетки транс­лируется информация вирусной иРНК, и в них синтезируется вирус-специфический белок.

Пятая фаза - сборка вириона. Путем самосборки образуются нуклеокапсиды.

Шестая фаза - выход вирионов из клетки. Простые вирусы, на­пример, вирус полиомиелита, при выходе из клетки разрушают ее. Сложноорганизованные вирусы, например, вирус гриппа, выходят из клетки путем почкования. Внешняя оболочка вируса (суперкапсид) формируется в процессе выхода вируса из клетки. Клетка при таком процессе на какое-то время остается живой.

Описанные типы взаимодействия вируса с клеткой называются продуктивными, так как приводят к продукции зрелых вирионов.

Иной путь - интегративный - заключается в том, что после проник­новения вируса в клетку и "раздевания" вирус­ная нуклеиновая кисло­та интегрирует в клеточ­ный геном, то есть встраивается в опреде­ленном месте в хромосо­му клетки и затем в виде так называемого прови-руса реплицируется вме­сте с ней. Для ДНК- и РНК-содержащих виру­сов этот процесс совер­шается по-разному. В первом случае вирусная ДНК интегрирует в кле­точный геном. В случае РНК-содержащих виру­сов вначале происходит обратная транскрипция: на матрице вирусной РНК при участии фермента "обратной транскриптазы" образуется ДНК, которая встраи­вается в клеточный геном. Провирус несет дополнительную генетичес­кую информацию, поэтому клетка приобретает новые свойства. Виру­сы, способные осуществить такой тип взаимодействия с клеткой, на­зываются интегративными. К интегративным вирусам относятся неко­торые онкогенные вирусы, вирус гепатита В, вирус герпеса, вирус им­мунодефицита человека, умеренные бактериофаги.

Репродукция вирусов в клетке - продуктивная инфекция – единый процесс, условно подразделяемый на несколько этапов:
1.адсорбция вирионов на летке
2. Проникновение вирусов в клетку
3. Депротеинизация вириона и освобождение его нуклеиновой кислоты (генома)
4. Экспрессия вирусного генома, синтез компонентов вириона (транскрипция, трансляция, репликация)
5. формирование вирионов
6. Выход нового поколения вирионов из клетки

Первые 3 этапа – подготовительные. Собственно репродукция – с 4 этапа.

1. Адсорбция вирионов на клетке – осуществляется при наличии специфических рецепторов. У простых вирусов – поверхностные прикрепительные белки, у сложных – прикрепительных белков роль играют гликопротеины, образующие шипики на суперкапсиде.
Рецепторы на поверхности клеточной мембраны могут иметь различную природу, их количество достигает 10 4 и более на клетку. Адсорбция начинается как неспецифическая, а продолжается как специфическая (вирус «узнается» и связывается комплементарным рецептором). Тропизм вирусов – избирательное поражение клеток и тканей у определенных видов организмов (наличие комплементарных рецепторов на них).

2. Проникновение вирионов в клетку

Путем рецепторного эндоцитоза (виропексиса ) – в месте адсорбции вируса образуется эндосома (впячивание), содержащая вирус. Она объединяется с клеточной лизосомой и вакуолью, образует рецептосому (проникают и простые и ложные вирусы этим путем).
- путем слияния мембран суперкапсида вируса и клетки. Осуществляется белками слияния. Нуклеокапсид оказывается в цитоплазме клетки. Характерно для сложных вирусов, обладающих F-белками слияния или другими гликопротеинами (например, гемагглютинин вируса гриппа).
- Возможно сочетание.

3. депротеинизация вирусов («раздевание»). Цель- освобождение нуклеиновой кислоты для индукции репродукции вируса.
Вирусы, проникшие в клетку рецепторным эндоцитозом, покидают рецептосому путем слияния мембран (сложные вирусы) или при участии капсидных поверхностных белков (простые вирусы). При этом лизосомальными ферментами и ферментами мембраны рецептосомы проводится частичная депротеинизация. Продолжается «раздевание» в цитоплазме протеазами и другими клеточными ферментами.
Если вирус проникает в клетку способом слияния мембран, депротеинизация начинается при уже при проникновении с помощью ферментов клеточной мембраны. Продолжается в цитоплазме.

Освобождение генома может быть полным, а может неплным (остаются внутренние белки или капсидные, которые в дальнейшем защищают нуклеиновую кислоту от нуклеаз цитоплазмы).

4. экспрессия вирусного генома. Иногда требует транспортировки в ядро.

А) транскрипция – образование на матрице генома комплементарных и-РНК

Б) трансляция – перевод генетической информации с и-РНК в последовательность аминокислот. Проводится и-РНК на клеточных рибосомах с подавлением синтеза клеточных белков. Вирусные белки могут формироваться: с коротких моноцистронных и-РНК (отдельные белки, на рибосомах), с длинных полицистронных и-РНК (гигантский полипептид, на полисомах, впоследствие нарезается на отдельные белки).

Особенности:
- вирусы с двунитевой ДНК: геномная ДНК -> транскрипция -> и-РНК -> трансляция -> белок (сперва ранние неструктурные, потом поздние структурные)

Осуществляется в ядре (у большинства вирусов) – клеточная транскриптаза, в цитоплазме – вирусная транскриптаза.

РНК – геномная РНК одновременно и-РНК: геномная +РНК > трансляция > белок (гигантский полипептид, который нарезается протеазами)
- минус-РНК: геномная –РНК > транскрипция > и-РНК > трансляция > белок
осуществляется собственными транскриптазами

Ретровирусы (онкогенные вирусы и возбудители ВИЧ-инфекции) – диплоидный геном из двух идентичных однонитевых +РНК и ревертазой (обратной транскриптазой) (такой же путь передачи возможно у вируса гепатита В и клещевого энцефалита: геномная РНК > провирус (комплементарная ДНК) > транскрипция > и-РНК > трансляция > белок

Репликация: синтез на матрице исходного генома вируса множества идентичных копий. В ядре (у большинства) и в цитоплазме. Процесс начинается после накопления неструктурных ранних белков. Осуществляется вирусными клеточными полимеразами. Осуществляется сразу полностью.

У двунитевых ДНК-геномов – с помощью репликазы по полуконсервативному типу, подобно клеточным ДНК

Однонитевые +РНК геном - с помощью вирус-индуцированной РНК-полимеразы. На исходной +РНК формируется –РНК (двунитевый промежуточный репликативный комплекс), которая отщепляется, на ней формируется +РНК, идентичная исходной. происходит накопление множества копий генома.

Однонитевые –РНК геном – с помощью РНК-зависимой РНК-полимеразы, тоже через двунитевый промежуточный репликативный комплекс

У ретровирусов – те же стадии, что и при транскрипции, с обязательной репликацией провирусной ДНК в хромосому клетки. На матрице провирусной ДНК реплицируются копии однонитевых +РНК.
Для ретровирусов характерно сочетание интегративной и продуктивной инфекции (при преобладании интегративной наблюдается персистенция вируса).

В результате экспрессии в клетке накапливаются копии вирусных геномов и структурные белки. Эти процессы происходят в разных частях клетки, и такой способ репродукции называется разобщенным (дизъюнктивным).

5. Формирование вирионов из компонентов вируса. В цитоплазме.

Простые вирусы: пустеем самосборки, капсид по спиральному или кубическому типу формируется. Получается нуклеокапсид.

Сложные вирусы формируются в несколько этапов. Образуется нуклеокапсид, затем они взаимодействуют с модифицированными мембранами клетки, одеваются суперкапсидной оболочкой, у некоторых вирусов под суперкапсидом формируется М-слой.

6. Выход вирионов из клетки

При лизисе клетки («по взрувному типу», характерен для простых вирусов)

Путем почкования (сложные вирусы, одновременно приобретают суперкапсид). Клетка погибает не сразу, успевает выделить новые поколения вирусов до истощения ее ресурсов.

Рекомендуем почитать

Наверх