Лабораторный блок питания на lm2596 и lm358. Понижающий преобразователь напряжения на LM2596 из каменного века

Безопасность 23.10.2020
Безопасность

Лабораторный блок питания на базе импульсного стабилизатора LM2576T-ADJ с регулировкой выходного напряжения 0-30В и тока 0-3А , с функцией ограничения выходного тока и индикацией режима ограничения при помощи светодиода.

Все мы очень давно знакомы с линейными стабилизаторами напряжения, особенно с трёхвыводными в корпусах TO-220 типа 7805, 7812, 7824 и LM317. Они недорогие и легко доступны. Их малошумящая и быстрая переходная характеристика делают их идеальными для многих применений. Но им присущ один недостаток - неэффективность (очень низкий КПД). Например, при подаче на стабилизатор 7805 напряжения 12В и при токе нагрузки 1А, на стабилизаторе будет рассеиваться мощность 7Вт при мощности нагрузки 5Вт. Поэтому требуется большой радиатор для охлаждения самого стабилизатора. Когда важна эффективность, например при работе от батареи, необходимо выбирать импульсный стабилизатор. Фактически, самое современное оборудование использует импульсные источники питания и импульсные регуляторы или стабилизаторы. Но много радиолюбители уклоняются от импульсных регуляторов, поскольку, например, использование популярной LM3524 требует большого количества внешних деталей и внешнего коммутационного транзистора. Кроме того строгие требования для катушки индуктивности. Как выбрать правильно, и где их взять? К счастью, более новый импульсный регулятор типа LM2576 от National Semiconductor"s позволяет собирать импульсный стабилизатор с высоким КПД так же легко, как и с помощью 7805 и т.п. Микросхема выпускается в пятивыводном привычном корпусе типа TO-220 и корпусе ТО-263 для поверхностного монтажа. Диапазон питающих напряжений 7-40В постоянного тока. КПД - до 80%. Выходной ток - до 3А и на несколько напряжений (3.3V, 5 V, 12V, 15V), а также и в версии регулируемого выходного напряжения, что представляет для нас особенный интерес. При проектировании с использованием импульсного стабилизатора получается малый размер платы, кроме того необходим радиатор с малой площадью поверхности, обычно не более 100 см. кв. Частота преобразования стабилизатора 52 кГц. Есть серия высоковольтных стабилизаторов с маркировкой HV с диапазоном входных напряжений 7-60В и возможностью регулировки выходного напряжения до 55В.

Приведенная на рисунка схема лабораторного блока питания на базе импульсного стабилизатора LM2576T-ADJ с регулировкой выходного напряжения в диапазоне 0-30В и возможностью ограничения тока нагрузки в диапазоне 0-3А найдена в сети Интернет и подробно рассмотрена на форуме сайта http://vrtp.ru. Кстати, замечательный сайт, рекомендую к посещению:) Свечение светодиода указывает на включение режима ограничения выходного тока, что очень удобно при проверке и ремонте радиоэлектроных устройств.


Чтобы облегчить режим работы стабилизатора 7805 (в корпусе ТО-92) и для повышения верхнего предела напряжения Uвх, последовательно с U2 установлен стабилитрон VD1. Схема регулирования тока и напряжения собрана на сдвоенном компараторе LM393. На первой половинке U3.1 собран регулятор напряжения, а на второй половинке U3.2 собран регулятор тока. На транзисторном ключе Q1 собран узел индикации включения режима ограничения выходного тока. Номинальный ток дросселя необходимо выбирать не менее тока нагрузки. Возможно пиатние слаботочной части схемы от отдельного источника напряжения с подачей его непосредственно на вход U2, при этом стабилитрон VD1 не устанавливается. Хорошо работает с низкоомной нагрузкой. Без изменения схемы, в ней можно применять импульсные стабилизаторы LM2596T-ADJ с частотой преобразования 150 кГц и диапазоном питающих напряжений 4,5-40В. Выходной ток - до 3А. КПД - до 90%.

Размеры печатной платыы блока питания 72х52 мм, расстояние между осями переменных резисторов 30 мм.:

Видео работы стабилизатора (без слов) приведено ниже. Поскольку сборка и проверка устройства велась в г. Донецке в то время, когда за окном рвались снаряды, то не было никакой охоты ничего рассказывать. Да и собирать его не хотелось, но нужно было как-то отвлечься от действительности. Надеюсь Вы меня поймёте.

Стоимость печатной платы с маской и маркировкой: закончились:)

Стоимость набора деталей с печатной платой для сборки блока питания (без радиатора): временно нет в наличии:(

Стоимость собранной и проверенной платы блока питания (без радиатора): временно нет в наличии:(

Краткое описание, схема и перечень компонентов набора

Для покупки печатных плат, наборов для сборки и готовых собранных блоков обращайтесь или

Всем удачи, мирного неба, добра, 73!

Оказывается на микросборке LM2596 можно легко собрать полнофункциональный стабилизированный источник питания, который можно использовать практически в любом лабораторном блоке питания с защитой от возможного короткого замыкания.

Максимально допустимые характеристики и свойства:


Аналоги зарубежные: Полным аналогом данной микросхемы является чип MIC4576BU

Типовая схема включения микросхемы:


Все компоненты схемы, использованные для сборки конструкции, в первом варианте исполнения по номиналам соответствуют тем, что указаны в даташите (смотри архив по ссылке выше), только подстроечное сопротивление найти на пятьдесят килоом неудалось, поэтому вместо него стоит сопротивление на 47 килоом. Плюсом этого стабилизатора напряжения можно считать минимальный нагрев на больших токах, чем не могут похвастать типовые на микросборки КРЕНок и LM317.

Дополнительно на пятую ножку микросборки можно подовать сигнал, отключающий устройство.

Вариант 2 - Регулируемый стабилизатор напряжения на основе микросхемы LM2596T

LM2596T работая в импульсном режиме, имеет достаточно высокий КПД и дает возможность протекать через себя токам номиналом до 2 А, при этом не требуя теплоотвода. Для больших токов в нагрузки требуется испоьзовать радиатор с площадью поверхности не ниже 100 см 2 . Кроме того радиатор следует закрепить к микросборке, с применением теплопроводной пасты типа КПТ-8.

Схему можно настроить на любое другое фиксированное напряжение на выходе, т.е использовать стабилизатор в роли DC-DC преобразователя. Для этого требуется заменить сопротивление R2 на резистор, рассчитываемый по следующей математической формуле:

R 2 = R 1 ×(V вых / V ref-1)
или R 2 = 1210×(V вых /1.23 - 1)

Если подключить эту конструкцию к сетевому понижающему трансформатору с

Понижающие DC-DC преобразователи все чаще и чаще находят свое применение в быту, хозяйстве, автомобильной технике, а также в качестве регулируемых блоков питания в домашней лаборатории.

К примеру, на большегрузном автомобиле напряжение бортовой кабельной сети может составлять +24В, а вам необходимо подключить автомагнитолу или другое устройство с входным напряжение +12В, тогда такой понижающий преобразователь вам очень пригодится.

Множество людей заказывают с различных китайских сайтов понижающие DC-DC преобразователи, но их мощность довольно таки ограничена, ввиду экономии китайцами на сечении обмоточного провода, полупроводниковых приборах и сердечниках дросселей, ведь чем мощнее преобразователь, тем он дороже. Поэтому, предлагаю вам собрать понижающий DC-DC самостоятельно, который превзойдет по мощности китайские аналоги, а также будет экономически выгоднее. По моему фотоотчету и представленной схеме видно, что сборка не займет много времени.

Микросхема LM2596 есть ни что иное, как импульсный понижающий регулятор напряжения. Она выпускается как на фиксированное напряжение (3.3В, 5В, 12В) так и на регулируемое напряжение (ADJ). На базе регулируемой микросхемы и будет построен наш понижающий DC-DC преобразователь.

Схема преобразователя

Основные параметры регулятора LM2596

Входное напряжение………. до +40В

Максимальное входное напряжение ………. +45В

Выходное напряжение………. от 1.23В до 37В ±4%

Частота генератора………. 150кГц

Выходной ток………. до 3А

Ток потребления в режиме Standby………. 80мкА

Рабочая температура от -45°С до +150°С

Тип корпуса TO-220 (5 выводов) или TO-263 (5 выводов)

КПД (при Vin= 12В, Vout= 3В Iout= 3А).......... 73%

Хотя КПД может и достигать 94%, он зависит от входного и выходного напряжения, а также от качества намотки и правильности подбора индуктивности дросселя.

Согласно графика, взятого из , при входном напряжении +30В, выходном +20В и токе нагрузки 3А, КПД должен составить 94%.

Также у микросхемы LM2596 есть защита по току и от перегрева. Замечу, что на неоригинальных микросхемах данные функции могут работать некорректно, либо вовсе отсутствуют. Короткое замыкание на выходе преобразователя приводит к выходу из строя микросхемы (проверил на двух LM-ках), хотя тут удивляться и нечему, производитель не пишет в даташите о присутствии защиты от КЗ.

Элементы схемы

Все номиналы элементов указаны на схеме электрической принципиальной. Напряжение конденсаторов С1 и С2 выбирается в зависимости от входного и выходного напряжения (напряжение входа (выхода) + запас 25%), я установил конденсаторы с запасом, на напряжение 50В.

Конденсатор C3 - керамический. Номинал его выбирается согласно таблицы из даташита. Согласно этой таблицы емкость C3 подбирается для каждого отдельного выходного напряжения, но так как преобразователь в моем случае регулируемый, то я применил конденсатор средней емкости 1нФ.

Диод VD1 должен быть диодом Шоттки, или другим сверхбыстрым диодом (FR, UF, SF и др.). Он должен быть рассчитан на ток 5А и напряжение не меньше 40В. Я установил импульсный диод FR601 (6А 50В).

Дроссель L1 должен быть рассчитан на ток 5А и иметь индуктивность 68мкГн. Для этого берем сердечник из порошкового железа (желто-белого цвета), наружный диаметр 27мм, внутренний 14мм, ширина 11мм, ваши размеры могут отличаться, но чем больше они будут, тем лучше. Далее мотаем двумя жилами (диаметр каждой жилы 1мм) 28 витков. Я мотал одиночной жилой диаметром 1,4мм, но при большой выходной мощности (40Вт) дроссель грелся сильно, в том числе и из-за недостаточного сечения жилы. Если мотать двумя жилами, то в один слой обмотку положить не удастся, поэтому нужно мотать в два слоя, без изоляции между слоями (если эмаль на проводе не повреждена).

Через резистор R1 протекает малый ток, поэтому его мощность 0,25Вт.

Резистор R2 подстроечный, но может быть заменен на постоянный, для этого его сопротивление рассчитывается на каждое выходное напряжение по формуле:

Где R1 = 1кОм (по даташиту), Vref = 1,23В. Тогда, посчитаем сопротивление резистора R2 для выходного напряжения Vout = 30В.

R2 = 1кОм * (30В/1,23В - 1) = 23,39кОм (приведя к стандартному номиналу, получим сопротивление R2 = 22кОм).

Также, зная сопротивление резистора R2, можно рассчитать выходное напряжение.

Испытания понижающего DC-DC преобразователя на LM2596

При испытаниях на микросхему был установлен радиатор площадью ≈ 90 см² .

Испытания я проводил на нагрузке сопротивлением 6,8 Ом (постоянный резистор, опущенный в воду). Изначально на вход преобразователя я подал напряжение +27В, входной ток составил 1,85А (входная мощность 49,95Вт). Выходное напряжение я выставил 15,5В, ток нагрузки составил 2,5А (выходная мощность 38,75Вт). КПД при этом составил 78%, это очень даже неплохо.

После 20 мин. работы понижающего преобразователя диод VD1 нагрелся до температуры 50°С, дроссель L1 нагрелся до температуры 70°С, сама микросхема нагрелась до 80°С. То есть, во всех элементах есть резерв по температуре, кроме дросселя, 70 градусов для него многовато.

Поэтому для эксплуатации данного преобразователя на выходной мощности 30-40Вт и более, необходимо мотать дроссель двумя (тремя) жилами и выбирать больший по размерам сердечник. Диод и микросхема могут долговременно держать температуру 100-120°С без каких-либо опасений (кроме нагрева всего что рядом находится, в том числе и корпуса). При желании можно установить на микросхему больший по размеру радиатор, а у диода VD1 можно оставить длинные выводы, тогда будет тепло отводиться лучше, либо прикрепить (припаять к одному из выводов) небольшую пластинку (радиатор). Также нужно как можно лучше залудить дорожки печатной платы, либо пропаять по ним медную жилу, это обеспечит меньший нагрев дорожек при долгой работе на большую выходную мощность.

Сегодня стали доступны готовые модули импульсных стабилизаторов напряжения на микросхеме LM2596.

Заявлены довольно высокие параметры, а стоимость готового модуля меньше стоимости входящих в него деталей. Прельщают малые размеры платы.
Я решил приобрести несколько штук и испытать их. Надеюсь, мой опыт будет полезен не слишком опытным радиолюбителям.

Я купил на ebay модули , как на фото выше. Хотя на сайте были показаны твердотельные конденсаторы на напряжение 50 В, аукцион оправдал своё имя. Конденсаторы обычные, а половина модулей с конденсаторами на напряжение 16 В.

... это трудно назвать стабилизатором...

Можно подумать, что достаточно взять трансформатор, диодный мост, подключить к ним модуль, и перед нами стабилизатор с выходным напряжением 3…30 В и током до 2 А (кратковременно до 3 А).
Я так и сделал. Без нагрузки всё было хорошо. Трансформатор с двумя обмотками по 18 В и обещанным током до 1,5 А (провод на глаз был явно тонковат, так оно и оказалось).
Мне нужен был стабилизатор +-18 В и я выставил нужное напряжение.
При нагрузке 12 Ом ток 1,5 А, вот осциллограмма, 5 В /клетка по вертикали.

Это трудно назвать стабилизатором.
Причина проста и понятна: конденсатор на плате 200 мкФ, он служит только для нормальной работы DC-DC преобразователя. При подаче на вход напряжения от лабораторного блока питания, всё было нормально. Выход очевиден: надо питать стабилизатор от источника с малыми пульсациями, т. е. добавить после моста ёмкость.

Вот напряжение при нагрузке 1,5 А на входе модуля без дополнительного конденсатора.


С дополнительным конденсатором 4700 мкФ на входе, пульсации на выходе резко уменьшились, но при 1,5 А были ещё заметны. При уменьшении выходного напряжения до 16 В, идеальная прямая линия (2 В /клетка).


Падение напряжения на модуле DC-DC должно быть минимум 2…2,5 В.

Теперь можно смотреть пульсации на выходе импульсного преобразователя.


Видны небольшие пульсации с частотой 100 Гц промодулированные частотой несколько десятков кГц. Datasheet на 2596 рекомендует дополнительный LC фильтр на выходе. Так мы и сделаем. В качестве сердечника я использовал цилиндрический сердечник от неисправного БП компьютера и намотал обмотку в два слоя проводом 0,8 мм.


На плате красным цветом показано место для установки перемычки – общего провода двух каналов, стрелкой – место для припаивания общего провода, если не использовать клеммы.

Посмотрим, что стало с ВЧ-пульсациями.


Их больше нет. Остались небольшие пульсации с частотой 100 Гц.
Неидеально, но неплохо.
Замечу, что при увеличении выходного напряжения, дроссель в модуле начинает дребезжать и на выходе резко растёт ВЧ-помеха, стоит напряжение чуть уменьшить (всё это при нагрузке 12 Ом), помехи и шум полностью пропадают.

Для монтажа модуля я применил самодельные «стойки» из луженого провода диаметром 1 мм.


Это обеспечило удобный монтаж и охлаждение модулей. Стойки можно сильно нагревать при пайке, они не сместятся в отличие от простых штырей. Эта же конструкция удобна, если надо припаять к плате внешние провода – хорошая жесткость и контакт.
Плата позволяет легко заменить при необходимости модуль DC-DC.

Общий вид платы с дросселями от половинок какого-то ферритового сердечника (индуктивность не критична).

Итоговая схема включения:

Схема проста и очевидна.

При длительной нагрузке током 1 А детали заметно нагреваются: диодный мост, микросхема, дроссель модуля, больше всего дроссель (дополнительные дроссели холодные). Нагрев на ощупь 50 градусов.

При работе от лабораторного блока питания, нагрев при токах 1,5 и 2 А терпимый в течение нескольких минут. Для длительной работы с большими токами желателен теплоотвод на микросхему и дроссель большего размера.

Несмотря на крошечные размеры модуля DC-DC, общие размеры платы получились соизмеримыми с платой аналогового стабилизатора.

Выводы:

1. Необходим трансформатор с сильноточной вторичной обмоткой или с запасом по напряжению, в этом случае ток нагрузки может превышать ток обмотки трансформатора.

2. При токах порядка 2 А и более желателен небольшой теплоотвод на диодный мост и микросхему 2596.

3. Конденсатор питания желателен большой ёмкости, это благоприятно сказывается на работе стабилизатора. Даже крупная и качественная ёмкость немного нагревается, следовательно желательно малое ESR.

4. Для подавления пульсаций с частотой преобразования, LC фильтр на выходе необходим.

5. Данный стабилизатор имеет явное преимущество перед обычным компенсационным в том, что может работать в широком диапазоне выходных напряжений, при малых напряжениях можно получить на выходе ток больше, чем может обеспечить трансформатор.

6. Модули позволяют сделать блок питания с неплохими параметрами просто и быстро, обойдя подводные камни изготовления плат для импульсных устройств, то есть хороши для начинающих радиолюбителей.

Здравствуйте, уважаемые посетители. Еще год назад купил на ебэй преобразователи DC-DC для небольшого лабораторного блока питания, да и вообще для общего развития. Да и цена в 66 рублей оказалась весьма привлекательной.

Общий вид преобразователя показан на скриншоте.

Как видно из фото, платка совсем не большая, и имеет размеры 41×20мм. Основой данного конвертора является микросхема LM2596S

,

представляющей из себя регулируемый, понижающий импульсный стабилизатор напряжения с частотой до150кГц и максимальным выходным током, равным 3А. Схема включения стабилизатора типовая и показана на рисунке 1.

Максимальное входное напряжение микросхемы — 40В, у меня такого напряжения в данный момент не нашлось, поэтому анализ стабилизатора проводил при напряжении на входе устройства 27 вольт. На выходе установил подстроечным резистором напряжение 6,5 вольт. Максимальный ток 3А, при таком монтаже и отсутствием хотя бы небольшого радиатора, счел слишком большим. Поэтому был выбран ток нагрузки в 1,5 А. И так, имея такие значения параметров, после получаса работы, температура корпуса микросхемы составила приблизительно 75 градусов Цельсия. Такое положение дел, надо сказать, меня порадовало. Т.е. при снабжении микросхемы радиатором или при применении обдува, выходной ток стабилизатора в 3 ампера вполне реален. Минимальное напряжение на выходе этого конкретного стабилизатора у меня составило 2,5 вольта.

На основе данного модуля можно конструировать разнообразные самодельные, регулируемые, стабилизированные блоки питания, как однополярные, так и двухполярные. Его можно применить для питания светодиодных светильников, подойдет и для питания электродвигателей постоянного тока, используемых в микродрелях, с возможность регулировки оборотов. Такой стабилизатор вполне может заменить линейный стабилизатор на микросхеме КР142ЕН5 для питания схем, в состав которых входят микроконтроллеры. Особенно тогда, когда разница входного напряжения стабилизатора и напряжения выхода очень большая и возникает необходимость применения теплоотвода для микросхемы. Имеет смысл применить такой стабилизатор для гашения лишнего напряжения, когда напряжение вторичной обмотки, приобретенного вами трансформатора, больше необходимого, а смотать витки невозможно или лень. Тогда шестьдесят шесть рублей — это ничто. Успехов. К.В.Ю.

Рекомендуем почитать

Наверх