Схемы детекторных приемников. Переделка китайского приемника для прослушивания жучков Детекторный с частотным детектором

Оборудование 30.06.2020
Оборудование

Для нормальной работы тюнера перестройкой одного блока УКВ не обойтись, нужен новый стереодекодер, а учитывая что спектр КСС полярной модуляции составляет 165 кгц против 190 кгц у буржуинов, то стоит задуматься, что делать с упч-частотным детектором.

Краткие выводы по результатам испытаний


  • Замена фильтра на фирменный муратовский E10.7S даёт выигрыш по чувствительности около двух раз. Применение двух фильтров последовательно целесообразна но не обязательна.

  • Шунтирование фазосдвигающих контуров для снижения искажений безсмысленно, они и так малы. Добротность контуров оптимальна.

Первым делом стоит повысить чувствительность тюнера увеличив коэффициент усиления по ПЧ вращением резистора R2 ДЧМ по часовой стрелке, но без фанатизма, чувствительность может оказаться слишком высока, что отразится на избирательности.

При настройке стереодекодера, при большом уровне НЧ в сигнале было заметно отключение стерео на пиках сигнала. Это вызвало подозрения, что при большой девиации фильтр обрезает края. Хотя причина могла крыться и в неточночной настройке СД.

Теперь, благодаря СДР приёмнику, я вижу гораздо дальше, и могу посмотреть полосу пропускания керамики.


Для этого на генератор работающий в ФМ диапазоне нужно подать модулирующий сигнал. С небольшой девиацией выглядит так

Но чтобы увидеть АЧХ фильтра девиация должна быть заведомо больше его полосы пропускания.
В описании приводятся данные на -3 и -20 дб, по этим точкам и будем ориентироваться, хотя для -3 показания получаются довольно размыты.

Для сравнения применялся муратовский фильтр на 180 КГц E10.7S АЧХ которого практически в точности соответствовали этим

Нижний скат АЧХ, уровень -20 ДБ

Уровень -3 ДБ

А куда делась бумажка на которой были записаны характеристики ФП1П8-3? Ладно, я и так помню что его полоса уже на пару десятков килогерц, как и должно быть.

E10.7S по -3 имеет полосу 10.650-10.840, по -20 10,517-10,966. Уровень ПЧ на выходе по сравнению с ФП1П8-3 вырос где-то на 5 ДБ.

При подключении двух фильтров последовательно полоса по -3 расширилась до 240 КГЦ, а по -20 сузилась до 336 КГЦ, уровень ПЧ при этом уменьшился всего на пару дб, так что было решено оставить два последовательных фильтра, хотя субъективно особого улучшения качества приёма я как то не заметил.

С фильтром решено, остаётся ЧМ детектор.
Он выполнен на микросхеме К174ХА6 (TDA1047).

ЧМ детектирование производится перемножением ячейкой Гилберта исходного сигнала и поданного на фазосдвигающий контур, настроенный на ПЧ. Промежуточная частота подавляется вследствие перемножения, а на выходе будет однополярное напряжение изменяющееся пропорционально разнице фаз. Чем ниже добротность контура или девиация (в определённых пределах), тем меньше выходное напряжение и искажения. Снизить добротность можно шунтированием контура резистором.

Для оценки Кг несущая частота модулируется тональными сигналами.
Искажения на выходе тюнера невелики, особенно при точной настройке, и практически одинаковы во всём диапазоне

Это искажения всего тракта телефон(источник зч)-простейший самодельный генератор-тюнер со стереодекодером TA7343AP-звуковая карта. Честно говоря удивлён их малой величине, даже не знаю как такое получилось. При расстройке в пределах работы АПЧ искажения несколько возрастают

Кг никак не зависит от шунтирования контуров резисторами 3.9к (подобраны экспериментально, при меньших сопротивлениях нарушается работа шумоподавителя).

Выше определённого порога наступает ограничение и резкий рост искажений


Шунтирование обоих контуров резисторами 3.9к незначительно эти снижает искажения, с пропорциональным зч уровня снижением.

Но реальный сигнал на десятки децибел ниже и никогда не достигает этого уровня, потому шунтирование ни к чему. Параметры контуров выбраны оптимально и обеспечивают минимально возможные искажения. К тому же при шунтировании происходит нарушение работы бесшумной настройки, из-за снижения управляющего напряжения даже мощные станции плохо открывают шумоподавитель.

В заключение аналогичная спектрограмма второго по популярности приёмника Tecsun PL-600. Минимально возможные искажения которые удалось получить. В любых режимах они в несколько раз превосходят искажения Радиотехники, так что тюнер пожалуй достоин потраченного на него времени.
Ясно что тексан для высокой верности воспроизведения не предназначен, но что нужно было нахуевертить, чтобы на стандартных и неплохих комплектующих получить такое я не представляю. Хотя для китайчины ситуация типовая.

Осталось собраться с силами, волю в кулак и т.п. и доделать наконец.

Конструкциям всевозможных детекторов радиоволн посвящено немало публикаций. Одна из самых простых и удачных конструкций описана в публикации . Однако данная конструкция требует использования отдельного стрелочного индикатора. При желании вместо него можно использовать мультиметр.

Схема детектора

Первоначально автором эта конструкция была собрана на основе индикатора записи от старого магнитофона, однако ток полного отклонения данного индикатора измеряется сотнями микроампер, так что детектор излучения работал только в относительно сильных полях.

С использованием миниатюрных радиодеталей данную электрическую схему удалось разместить в корпусе штепсельной вилки для радиотрансляционной сети.

Контакты вилки позволяют подключить данное устройство к мультиметру M890G. Для проверки использовался простейший УКВ генератор радиоволн.

Схема генератора для проверки

Данный генератор часто описывают как универсальную глушилку всего и вся. Это естественно не так, хотя на расстоянии 1-1,5 м ему вполне по силам создать помехи приему FM-радиостанций. Эта схемы подкупает своей простотой, и вполне пригодна для учебных и демонстрационных целей, но не более того. Вот генератор отключен.

Прошло уж больше года, и накопились некоторые статистические данные касаемо поисковых запросов, по которым люди находят мой блог. Явными лидерами признаны «приемник ВЭФ 202» , «VEF 214» и «VEF 202» , но нет-нет да и проскочит что-то в духе «как поймать на vef 202 fm волну» или «как переделать Спидолу 232 под fm диапазон» . Вот этим, не откладывая, и займемся.

Предупреждение для начинающих любителей крутить контуры. Самое главное отличие FM-диапазона от всех тех, что могут принимать «ВЭФы» — вид модуляции. Это значит, что при особом упорстве, наверное, можно перестроить планки на 88 — 108 МГц, но АМ-тракт приемника ничего не сможет сделать с частотно-модулированным сигналом станции. Поэтому, в какую схему промышленного приемника тех лет ни глянь, АМ и ЧМ-тракты разделены, и сходятся только по дороге к УНЧ. Следовательно, отсюда выплывает возможное решение: установить в «ВЭФ» (хотя совсем не обязательно — эта переделка касается «Океанов», «Альпинистов» и многих-многих других аппаратов вообще без никакого УКВ ) готовый FM-приемник, как правило, марки «китайский карманный». Есть, разумеется, умельцы, которые могут скрестить два верньера , но это не так-то просто, да и видно, что «ВЭФ» лишился родного динамика. Значит, для простой и дешевой переделки остается один вариант — сканирующий приемник, который легко узнать по кнопкам Scan и Reset .


С полной схемой ее включения можно ознакомиться в даташите, а для поверхностного осмотра хватит и этого. Вторая нога — выход звукового сигнала, четвертая — «плюс» питания (1,8 — 5 В), четырнадцатая — «минус», 11 и 12 — входной контур с антенной. В качестве последней используется провод наушников.



Красные дорожки — «плюс», синие — «минус», зеленые — антенный вход, желтые — выход звука. Светящиеся точки с черным пятном — контакты микровыключателей. К ним в параллель можно припаять другие кнопки на замыкание, которые будут выведены в удобное место. У «Палито», если убирать выключатель лампы, надо бросить перемычку, отмеченную ярко-голубым. Коричневым цветом обозначен «плюс», идущий проводом над платой.


«Я беру камень и отсекаю все лишнее» — Микеланджело. И меняю «электролиты».

В принципе, это «лишнее» можно не убирать, а брать звуковой синал прямо со второй ноги микросхемы, но чем меньше будет чуждая деталь по размерам, тем проще ее спрятать внутри фабричного приемника. Это у «232-й» или «317-го» места внутри завались. А вот у «ВЭФ 202» с этим хуже.



«Палито» тоже визуально стал легче. У «Манбо» между «плюсом» питания и антенной установлен его же родной дроссель со стороны печатных проводников.

Важно! Оба FM-приемника должны подключаться к антенне основного через конденсатор 100 — 470 пФ, так как на входе присутствует постоянное напряжение.

Теперь надо обеспечить питание. Начнем терзать «ВЭФ 202», хотя эти схемы подходят к любому приемнику с «плюсом» на «массе» .
Вариант первый. Стабилитрон



Стабилитрон можно взять на 5,1 или 5,6 вольт, тогда в схему будут приходить -3,9 или -3,4 вольта соответственно. Также работает с резисторами 330 и 470 Ом.


Первым пошел «Палито». Работает. На будущее скажу, что нечеткое переключение станций на видео происходит оттого, что плату приходилось держать в руке, и что-то где-то наводилось и не туда коммутировалось через сопротивление кожи.


Если закрыть глаза на коммутационные глюки, то «Манбо» тоже работает нормально. Правда, оказалось, что родной УНЧ приемничка не так уж бы и помешал — громкость «ВЭФа» весьма-таки «накручена». Можно было его оставить, а вместо «переменника» подобрать постоянный резистор нужного номинала.

Вариант второй. LM317T


«ЛМ-ку» рассчитал под пять вольт, и тогда получается, что «минус девять» плюс «плюс пять» равно «минус четыре». Можно вместо 750 Ом установить 680.


И тоже все работает.

Перейдем к более традиционной схемотехнике. Специально для тех, кто хочет послушать FM в «ВЭФ 317» или других приемниках с «минусом» на «массе» .
Вариант первый. Стабилитрон


Здесь никаких инверсий — если стабилитрон на три вольта, то три и будет.

А. Пахомов, г. Зерноград Ростовской обл.
Радио, 2003 год, № 1

Сравнение современных импортных радиоприемников (в основной своей массе китайско-гонконгских) с отечественными прошлых лет выпуска приводит к интересным результатам. В диапазонах СВ, ДВ и KB качественные показатели старых отечественных приемников гораздо лучше. Так, двухдиапазонный "КВАРЦ-302", производства конца 80-х годов, имел реальную чувствительность 0,4 мВ/м, что недостижимо для импортных аналогов, исключая, разумеется, дорогостоящие цифровые и профессиональные модели. На параметры приемников тех лет действовал отечественный ГОСТ5651-82, который жестко нормировал чувствительность, избирательность и другие характеристики в зависимости от группы сложности (класса).

Не вдаваясь в подробный анализ электрического тракта, отметим только, что современные малогабаритные радиоприемники выпускаются в основном в вертикальном исполнении, при котором малый горизонтальный размер радиоприемника не позволяет разместить магнитную антенну (МА) достаточной длины. При длине МА всего в несколько сантиметров уровень сигнала на входе первого каскада оказывается малым, а соотношение сигнал/шум - плохим. В результате внешне привлекательные и, казалось бы, удобные "Tecsan", "Manbo" и др. в диапазоне средних волн сильно "шумят" и не обеспечивают приемлемое качество приема. В диапазоне УКВ показатели несколько лучше, но и здесь с хорошим качеством возможен только местный прием. Из-за особенностей распространения радиоволн этого диапазона и низкой эффективности штыревой антенны диапазон УКВ (на приемнике он обозначен как FM) часто оказывается бесполезным на значительном удалении от передающих центров. В этих условиях гораздо целесообразнее иметь старый СВ-ДВ-КВ приемник, модернизировав его по предлагаемой ниже методике.

Благоприятной особенностью современных радиоприемников является питание от двух пальчиковых батарей общим напряжением 3 В. Отечественные модели работали в основном от девятивольтовой батареи "Крона". Преимущества трехвольтового питания очевидны: емкость гальванических элементов типа АА (отечественный вариант - типоразмер 316) в несколько раз выше, а стоимость даже двух штук ниже, чем одной батареи "Крона" и ее аналогов. Срок службы последней при средней громкости звучания не превышает 20...30 часов. Из-за объяснимого нежелания владельца часто менять недешевую батарею, вполне исправные отечественные радиоприемники лежат без дела. Альтернативные варианты питания также имеют недостатки: аккумуляторные батареи дороги и требуют периодической зарядки, а питание от сети сводит на нет мобильность - основное преимущество карманных радиоприемников.

Выход из положения - перевести приемник на трехвольтовое батарейное питание. Один из способов для этого предложен в . Он заключается в использовании преобразования напряжения элементов АА в напряжение питания приемника 9 В. Однако при этом не удается полностью избавиться от помех. Лучший и, пожалуй, более простой способ - внести изменения в схему самого радиоприемника таким образом, чтобы обеспечить нормальный режим работы всех каскадов при напряжении питания 3 В. Это вполне возможно, причем при грамотном подходе параметры приемника (кроме выходной мощности) практически не ухудшаются.

Рассмотрим модернизацию на примере приемника "КВАРЦ-302". Его схема является типичной для приемников данной группы и показана на рис. 1 (на ней не приведены элементы МА, входных цепей и контуров гетеродина, которые при доработке вообще не трогаются). В более поздних моделях этого и других радиоприемников вместо ФСС на катушках индуктивности стали применять пьезофильтр, что, однако, не влияет на дальнейшую технологию доработки, равно как и прочие несущественные отличия в схемах транзисторных приемников.

Для увеличения кликните по изображению (откроется в новом окне)

Первый каскад на транзисторе VT1 представляет собой смеситель с совмещенным гетеродином. Режим транзистора VT1 задан смещением на базу через резистор R2 и стабилизирован питанием от параметрического стабилизатора VD1, R11, С22. Напряжение стабилизации - 1,44 В, в связи с чем удается его сохранить при снижении общего напряжения питания до 2...3 В. Для этого достаточно лишь уменьшить сопротивление балластного резистора R11 до 1 кОм.

Важно отметить, что первый каскад во многом определяет работу приемника в целом. Транзистор VT1 типа КТ315 здесь не является оптимальным: он имеет высокий уровень шумов, значительную емкость переходов и малое усиление. Гораздо лучшие результаты получаются с СВЧ транзисторами типов КТ368, КТ399А. Хотя их параметры нормируются на более высоких частотах, но область минимума шумов распространяется "вниз", вплоть до частоты 0,5 МГц (КТ399А) - 0,1 МГц (КТ368), т. е. захватывает и СВ диапазон. Коэффициент усиления этих транзисторов меньше зависит от напряжения питания, что также важно в данном случае. Автором применен транзистор КТ399А, при этом уровень шума оказался настолько мал, что в отсутствие настройки на станцию трудно даже определить, включен приемник или выключен. Таким образом, замена транзистора VT1 гарантирует повышение чувствительности, ограниченной шумами. Чтобы обеспечить нормальный режим работы гетеродина (при токе эмиттера около 1 мА), сопротивления резисторов R3 и R5 следует уменьшить соответственно до 620 Ом и 1,5 кОм.

В исходной схеме тракт ВЧ-ПЧ и первый каскад УЗЧ питаются через развязывающий фильтр R10C13. На резисторе R10 образуется падение напряжения около 1 В, что нежелательно. Во избежание потерь напряжения резистор R10 следует заменить малогабаритным дросселем ДПМ-3 от унифицированных блоков телевизоров 3-го и 4-го поколений или, в крайнем случае, просто проволочной перемычкой. Правда, в последнем случае не гарантировано отсутствие самовозбуждения при разряде элементов питания.

В тракте ПЧ весьма желательно заменить транзистор VT3 типа КТ315Б на КТ3102Е, КТ3102Д или КТ342Б, КТ342В с коэффициентом усиления 400...500. Это необходимо для того, чтобы повысить коэффициент усиления по ПЧ и тем самым сохранить чувствительность, ограниченную усилением, а также обеспечить аффективную работу АРУ. Сигнал последней через фильтр R13C23 подается на базу транзистора VT3, в связи с чем важно правильно задать его рабочую точку, уменьшив сопротивления резистора R12 до 30 кОм.

В УМЗЧ необходимо также уменьшить сопротивление резистора R8 до 39 кОм, а общее сопротивление двух параллельно включенных резисторов R21, R23 довести до 1...1,5 Ом. Для чего резисторы R21, R23 заменить одним проволочным резистором указанного сопротивления. В данном УМЗЧ предусмотрена регулировка тока покоя подстроечным резистором R16. Во избежание искажений и получения приемлемой экономичности ток покоя должен быть в пределах 5...7 мА.

Для батареи питания изготавливают обечайку с пружинными контактами, в которую должны плотно входить два элемента АА. Конструкция обечайки может быть любой, в авторском варианте она изготовлена из двусторонне фольгированного стеклотекстолита и жести, детали соединены пайкой. Размеры обечайки позволяют разместить ее в отсеке батареи "Крона".

Настройка приемника производится при свежей батарее питания, напряжение под нагрузкой которой не менее 3 В. Вначале следует проверить режимы работы всех каскадов: для транзисторов VT1-VT3 производят измерения напряжения на их коллекторах, для транзисторов VT4-VT7 - на эмиттерах (см. таблицу ). На практике может потребоваться подстройка режима транзистора VT3, напряжение на коллекторе которого в отсутствие сигнала должно быть 1,4...1,6 В и регулироваться подбором резистора R12. Остальные режимы, как правило, устанавливаются автоматически при соблюдение вышеперечисленных операций.

Далее, если есть возможность, на вход УМЗЧ (VT2) подают сигнал от генератора 3Ч и, наблюдая выходной сигнал на осциллографе, подбором резистора R8 добиваются симметрии полуаолн синусоиды, а резистором R16 - отсутствия искажений типа "ступенька". Затем измеряют общий потребляемый ток в режиме молчания, который должен составлять 10 мА, и при необходимости регулируют его подстроечным резистором R16.

Как видно, предлагаемая модернизация проста и не требует больших затрат времени и средств. Достигаемый же результат впечатляет - чувствительность приемника не уменьшается (и даже несколько увеличивается), избирательность остается прежней, максимальный потребляемый ток а пиках сигнала не превышает 20 мА, работоспособность сохраняется при снижении напряжения питания до 1,8 В, срок работы радиоприемника от одного комплекта элементов АА - не менее 80 ч, а при хорошем качестве последних - более 100 ч.

Единственный параметр, ухудшающийся при переделке, - выходная звуковая мощность, которая падает до 20...30 мВт. Как правило, этого вполне достаточно, так как характеристическая чувствительность головки ВА1 весьма высока. Такую же выходную мощность имеют и большинство импортных приемников, но субъективно качество звучания переделанного оказывается лучше за счет лучших акустических свойств корпуса.

При желании модернизацию можно продолжить, собрав более мощный мостовой УМЗЧ. При этом не следует "изобретать велосипед" и изготавливать его на дискретных элементах, хотя такие схемы и опубликованы. Имеется большая номенклатура специализированных микросхем - готовых высококачественных усилителей с низковольтным питанием. На рис, 2 показана схема одного из них - УМЗЧ на микросхеме ТРА301. Вот некоторые его характеристики: выходная мощность при напряжении питания 3,3 В, КНи=0,5 %, F=1 кГц, RH=8 Ом - 250 мВт; ток покоя - менее 1,5 мА; ширина воспроизводимой полосы частот при максимальной выходной мощности - 10 кГц.

Близкие параметры и схемы включения имеют моноусилители на микросхемах ТРА311, ТРА701, ТРА711 . Все микросхемы снабжены защитой от теплоаых и электрических перегрузок. Типовая схема их включения с необходимыми дополнительными элементами поверхностного монтажа позволяет изготовить новый усилитель в виде миниатюрного блока. Старый УМЗЧ демонтируют, оставляя только каскад предусиления на транзисторе VT2, а новый собирают поверхностным (или любым) монтажом на отдельной плате по схеме рис. 2 из . Плата крепится на кронштейнах к основной в том месте, где демонтирован прежний УМЗЧ. Сигнал на вход подается с коллектора транзистора VT2 (см. рис.1), плюс питания - от батареи, емкость конденсатора С31 увеличивают до 220 мкФ. Настройки интегральный УМЗЧ не требует. Может потребоваться только подстройка каскада предварительного усиления на транзисторе VT2 по напряжению на коллекторе, указанном в таблице, подбором резистора R8.

ЛИТЕРАТУРА

  1. Пахомов А. Преобразователь для питания радиоприемников. - Радио, 2000, ╧2, с.19.
  2. Интегральные УМЗЧ с режимом АВ. Справочный материал. - Радиолюбитель (г Москва), 2001, ╧ 5, с. 43; ╧ 6, с. 42, 43.

Понятие детекторный приемник прочно ассоциируется с громадными антеннами и радиовещанием на длинных и средних волнах. В публикуемой статье автор приводит экспериментально проверенные схемы детекторных УКВ приемников, предназначенных для прослушивания передач УКВ ЧМ станций.

Сама возможность детекторного приема на УКВ была обнаружена совершенно случайно Однажды, гуляя по Терлецкому парку (г Москва, Новогиреево), я Решил прослушать эфир - благо захватил с собой простейший бесконтурный детекторный приемник (он был описан в Р2001, № 1, с. 52, 53, рис. 3).

Приемник имел телескопическую антенну длиной около 1,4 м. Интересно возможен ли прием на такую короткую антенну? Удалось услышать, довольно слабо, одновременную работу двух станций. Но что удивило - громкость приема периодически возрастала и падала практически до нуля через каждые 5-7 м, причем для каждой станции по-разному!

Известно, что на ДВ, и даже на СВ, где длина волны достигает сотен метров, такое невозможно. Пришлось остановиться в точке максимальной громкости приема одной из станции и внимательно послушать. Оказалось - “Радио Ностальжи", 100,5 FM, вещающая из недалекой Балашихи.

Прямой видимости антенн радиоцентра не было. Как же передача с ЧМ могла приниматься на амплитудный детектор? Последующие расчеты и эксперименты показывают что это вполне возможно и совершенно не зависит от самого приемника.

Простейший портативный детекторный УКВ приемник делается точно так же, как индикатор поля, только вместо измерительного прибора надо включить высокоомные головные телефоны Имеет смысл предусмотреть и регулировку связи детектора с контуром, чтобы подбирать ее по максимальной громкости и качеству приема

Простейший детекторный УКВ приемник

Схема приемника, отвечающего этим требованиям, показана на рис. 1 Она очень близка к той, по которой был выполнен приемник, упоминавшийся выше и позволивший обнаружить саму возможность детекторного приема. Добавлен лишь контур УКВ диапазона.

Рис. 1. Принципиальная схема простейшего детекторного УКВ приемника.

Устройство содержит штыревую телескопическую антенну WA1, непосредственно связанную с контуром L1 С1, настраиваемым на частоту сигнала. Антенна здесь также является элементом контура, поэтому для выделения максимальной мощности сигнала надо регулировать как ее длину, так и частоту настройки контура. В ряде случаев, особенно при длине антенны, близкой к четверти длины волны, ее целесообразно подключить к отводу контурной катушки, а положение отвода подобрать по максимальной громкости.

Связь с детектором регулируется подстроечным конденсатором С2. Собственно детектор выполнен на двух высокочастотных германиевых диодах VD1 и VD2. Схема полностью тождественна схеме выпрямителя с удвоением напряжения, однако продетектированное напряжение удваивалось бы лишь при достаточно большой емкости конденсатора связи С2, но нагрузка на контур была бы чрезмерной, а его добротность низкой. В результате понизились бы напряжение сигнала в контуре и громкость звука

В нашем же случае емкость конденсатора связи С2 невелика и удвоения напряжения не происходит. Для оптимального согласования детектора с контуром емкостное сопротивление конденсатора связи должно равняться среднему геометрическому между входным сопротивлением детектора и резонансным сопротивлением контура. При этом условии в детектор отдается максимальная мощность высокочастотного сигнала, соответствующая и максимальной громкости.

Конденсатор С3 - блокировочный он замыкает высокочастотные составляющие тока на выходе детектора. Нагрузкой последнего служат телефоны сопротивлением постоянному току не менее 4 кОм. Весь приемник собирается в небольшом металлическом или пластмассовом корпусе. В верхней части корпуса закреплена телескопическая антенна длиной не менее 1 м, а снизу - разъем или гнезда для подключения телефонов. Заметим, что шнур телефонов служит второй половиной принимающего диполя, или противовесом

Катушка L1 бескаркасная, она содержит 5 витков провода ПЭЛ или ПЭВ диаметром 0,6-1 мм, намотанных на оправке диаметром 7...8 мм. Подобрать необходимую индуктивность можно, растягивая или сжимая витки при настройке.

Конденсатор переменной емкости (КПЕ) С1 лучше всего использовать с воздушным диэлектриком, например, типа 1КПВМ с двумя-тремя подвижными и одной-двумя неподвижными пластинами. Его максимальная емкость невелика и может составлять 7-15 пФ. Если пластин больше (соответственно и емкость больше), целесообразно либо удалить часть пластин, либо включить последовательно с КПЕ постоянный или подстроечный конденсатор, уменьшив, таким образом, максимальную емкость. В качестве С1 подойдут также малогабаритные конденсаторы “плавной настройки’’ от транзисторных приемников с КВ диапазоном.

Конденсатор С2 - керамический подстроечный, типа КПК-1 или КПК-М емкостью 2...7 пФ Допустимо использовать и другие подстроечные конденсаторы, а также установить КПЕ, подобный С1, выведя его ручку на панель приемника. Это позволит регулировать связь “на ходу”, оптимизируя прием

Диоды VD1 и VD2, кроме указанных на схеме, могут быть типов ГД507Б, Д18, Д20 Блокировочный конденсатор С3 керамический, емкость его некритична и может иметь значение колебаться от 100 до 4700 пФ.

Налаживание приемника несложно и сводится к настройке контура конденсатором С1 на частоту станции и регулировке связи конденсатором С2 до получения максимальной громкости. Настройка контура при этом неизбежно изменится, поэтому все операции надо провести последовательно несколько раз, одновременно выбирая и наилучшее место для приема.

Оно, кстати, совсем необязательно должно совпадать (и скорее всего, не будет) с тем местом, где максимальна напряженность поля. Об этом следует поговорить подробнее и объяснить, наконец, почему вообще этот приемник может принимать сигналы с ЧМ.

Интерференция и преобразование ЧМ в АМ

Если контур L1С1 нашего приемника настроить так, чтобы несущая ЧМ сигнала попала на скат резонансной кривой, то ЧМ будет преобразовываться в АМ Посмотрим, какова для этого должна быть добротность контура. Полагая полосу пропускания контура равной удвоенной девиации частоты, получаем Q = fo/2*f = 700 как для верхнего, так и для нижнего УКВ диапазонов.

Реальная добротность контура в детекторном приемнике будет, вероятно, меньше из-за невысокой собственной добротности (порядка 150...200) и шунтирования контура и антенной, и входным сопротивлением детектора. Тем не менее слабое преобразование ЧМ в АМ возможно, и, таким образом, приемник будет еле-еле работать, если его контур слегка расстроить вверх или вниз по частоте.

Однако есть значительно более мощный фактор, способствующий преобразованию ЧМ в АМ, - это интерференция. Очень редко приемник находится в зоне прямой видимости антенны радиостанции, чаще ее закрывают здания, холмы, деревья и другие отражающие предметы. К антенне приемника приходит несколько лучей, рассеянных этими предметами.

Даже в зоне прямой видимости кроме прямого луча к антенне приходит несколько отраженных. Суммарный сигнал зависит как от амплитуд, так и от фаз складывающихся компонент.

Два сигнала складываются, если они в фазе, т. е. разность их путей кратна целому числу длин волн, и вычитаются, если они в противофазе, когда разность их путей составляет то же число длин волн плюс еще пол волны. Но ведь длина волны, как и частота, изменяется при ЧМ! Будет изменяться и разность хода лучей, и их относительный сдвиг фаз. Если разность хода велика, то даже небольшое изменение частоты приводит к значительным сдвигам фаз. Элементарный геометрический расчет приводит к соотношению:

где, дельта t - разность хода лучей, требуемая для сдвига фазы на ± Пи/2, т. е. для получения полной АМ суммарного сигнала; tдельтаf - девиация частоты. Под полной АМ мы здесь понимаем изменение амплитуды суммарного сигнала от суммы амплитуд двух сигналов до их разности. Формулу можно еще более упростить, если учесть, что произведение частоты на длину волны fo*(лямбда) равно скорости света с; дельта t = c/4*дельта f.

Тогда за один период модулирующего звукового колебания суммарная амплитуда интерферирующего сигнала несколько раз пройдет через максимумы и минимумы, и искажения при преобразовании ЧM в АМ окажутся чрезвычайно сильными, вплоть до полной неразборчивости звукового сигнала при приеме на АМ детектор.

Всегда лучше использовать направленную антенну, поскольку она увеличивает прямой сигнал и ослабляет отраженные, приходящие с других направлений.

Лишь в нашем случае самого простого детекторного приемника интерференция сыграла полезную роль и позволила прослушать передачу, но передача может быть слышна слабо или с большими искажениями не везде, а лишь в отдельных местах. Этим и объясняются периодические изменения громкости приема в Терлецком парке.

Детекторный с частотным детектором

Радикальный способ улучшения приема состоит в использовании частотного детектора вместо амплитудного. На рис. 2 показана схема портативного детекторного УКВ приемника с простым частотным детектором, выполненным на одном высокочастотном германиевом транзисторе УТ1.

Применение германиевого транзистора обусловлено тем, что его переходы открываются при пороговом напряжении около 0,15 В, что позволяет детектировать довольно слабые сигналы. Переходы кремниевых транзисторов открываются при напряжении около 0,5 В, и чувствительность приемника с кремниевым транзистором получается значительно ниже.

Рис. 2. Детекторный УКВ приемник с частотным детектором.

Как и в предыдущей конструкции, антенна связана с входным контуром L1С1, настраиваемым на частоту сигнала с помощью КПЕ С1. Сигнал с входного контура подается на базу транзистора. С входным контуром индуктивно связан другой - L2С2, также настраиваемый на частоту сигнала.

Колебания в нем, благодаря индуктивной связи, сдвинуты по фазе на 90° относительно колебаний во входном контуре. С отвода катушки L2 сигнал подается на эмиттер транзистора. В коллекторную цепь транзистора включены блокировочный конденсатор С3 и высокоомные телефоны BF1.

Транзистор открывается, когда на его базе и эмиттере действуют положительные полуволны сигнала, причем мгновенное напряжение на эмиттере больше. При этом в его коллекторной цепи через телефоны проходит продетектированный и сглаженный ток. Но положительные полуволны перекрываются лишь частично при сдвиге фаз колебаний в контурах на 90°, поэтому продетектированный ток не достигает максимального значения, определяемого уровнем сигнала.

При ЧМ, в зависимости от отклонения частоты, сдвиг фазы также изменяется, в соответствии с фазочастотной характеристикой (Ф4Х) контура L2С2. При отклонении частоты в одну сторону сдвиг фазы уменьшается и полуволны сигналов на базе и эмиттере перекрываются больше, в результате чего продетектированный ток возрастает.

При отклонении частоты в другую сторону перекрытие полуволн уменьшается и ток падает. Так происходит частотное детектирование сигнала.

Коэффициент передачи детектора прямо зависит от добротности контура L2С2, она должна быть как можно выше (в пределе, как мы сосчитали, до 700), поэтому-то связь с эмиттерной цепью транзистора выбрана слабой. Конечно, такой простейший детектор не подавляет АМ принимаемого сигнала, более того, его продетектированный ток пропорционален уровню сигнала на входе, что является очевидным недостатком. Оправдание - лишь в исключительной простоте детектора.

Так же, как и предыдущий, приемник собран в небольшом корпусе, из которого кверху выдвигается телескопическая антенна, а снизу расположены гнезда телефонов. На переднюю панель выведены ручки обоих КПЕ. Эти конденсаторы не следует объединять в один блок, поскольку, настраивая их раздельно, удается получить и большую громкость, и лучшее качество приема.

Катушки приемника бескаркасные, они намотаны проводом ПЭЛ 0,7 на оправке диаметром 8 мм. L1 содержит 5 витков, а L2 - 7 витков с отводом от 2-го витка, считая от заземленного вывода. Если есть возможность, катушку L2 желательно намотать посеребренным проводом для повышения ее добротности, диаметр провода при этом некритичен.

Индуктивность катушек подбирается сжиманием и растягиванием витков так, чтобы хорошо слышимые УКВ станции оказались в середине диапазона перестройки соответствующего КПЕ. Расстояние между катушками в пределах 15...20 мм (оси катушек параллельны) подбирают подгибанием их выводов, припаянных к КПЕ.

С описанным приемником можно провести массу занимательных экспериментов, исследуя возможность детекторного приема на УКВ, особенности прохождения волн в условиях городской застройки и т. д. Не исключены и эксперименты по дальнейшему усовершенствованию приемника.

Однако качество звука при приеме на высокоомные головные телефоны с жестяными мембранами оставляет желать лучшего. В связи со сказанным, был разработан более совершенный приемник, обеспечивающий лучшее качество звука и позволяющий использовать различные наружные антенны, соединенные с приемником фидерной линией.

Приемник с питанием от энергии поля

Экспериментируя с простым детекторным приемником, неоднократно пришлось убеждаться, что мощность продетектированного сигнала достаточно велика (десятки и сотни микроватт) и могла бы обеспечить довольно громкую работу телефонов.

Но прием получается неважным из-за отсутствия частотного детектора (ЧД). Второй приемник (рис. 2) в какой-то мере решает эту проблему, но мощность сигнала в нем также используется неэффективно из-за квадратурного питания транзистора высокочастотными сигналами. Поэтому решено было применить в приемнике два детектора: амплитудный - для питания транзистора; частотный - для лучшего детектирования сигнала

Схема разработанного приемника показана на рис. 3. Внешняя антенна (петлевой диполь) соединяется с приемником двухпроводной линией, выполненной из ленточного УКВ кабеля с волновым сопротивлением 240 .300 Ом. Согласование кабеля с антенной получается автоматически, а согласование со входным контуром L1С1 достигается подбором места подключения отвода к катушке.

Вообще говоря, несимметричное подключение фидера ко входному контуру уменьшает помехоустойчивость антенно-фидерной системы, но, учитывая низкую чувствительность приемника, здесь это не имеет особого значения.

Есть общеизвестные способы симметричного подключения фидера с использованием катушки связи или симметрирующего трансформатора. В условиях автора петлевой диполь был выполнен из обычного монтажного провода в изоляции и размещен на балконе, в месте с максимальной напряженностью поля. Длина фидера не превышала 5 м. При столь незначительных длинах потери в фидере пренебрежимо малы, поэтому с успехом можно применить телефонный провод.

Входной контур L1С1 настроен на частоту сигнала, и выделяющееся на нем высокочастотное напряжение выпрямляется амплитудным детектором, выполненным на высокочастотном диоде VD1. Поскольку при ЧМ амплитуда колебаний неизменна, требований к сглаживанию выпрямленного постоянного напряжения практически никаких нет.

Рис. 3. Схема УКВ приемника с питанием от энергии поля.

Квадратурный ЧД приемника собран на транзисторе VT1 и фазосдвигающем контуре L2С2. Высокочастотный сигнал на базу транзистора подается с отвода катушки входного контура через конденсатор связи С3, а на эмиттер - с отвода катушки фазосдвигающего контура. Работа детектора происходит точно так же, как и в предыдущей конструкции.

Для повышения коэффициента передачи ЧД и более полного использования усилительных свойств транзистора на его базу подано смещение через резистор R1, поэтому-то и пришлось установить разделительный конденсатор С3. Обратите внимание на его значительную емкость - она выбрана такой для замыкания низкочастотных токов на эмиттер, т. е. для “заземления" базы по звуковым частотам. Это повышает коэффициент усиления транзистора и увеличивает громкость приема.

В коллекторную цепь транзистора включена первичная обмотка выходного трансформатора Т1, служащего для согласования высокого выходного сопротивления транзистора с низким сопротивлением телефонов. С приемником можно использовать высококачественные стереотелефоны ТДС-1 или ТДС-6. Оба телефона (левого и правого каналов) соединяют параллельно.

Конденсатор С5 - блокировочный, он служит для замыкания высокочастотных токов, проникающих в коллекторную цепь. Кнопка SB1 служит для замыкания коллекторной цепи при настройке входного контура и поиске сигнала. Звук в телефонах при этом исчезает, но чувствительность индикатора значительно повышается.

Конструкция приемника может быть самой разной, но необходима передняя панель с установленными на ней КПЕ С1 и С2 (их снабжают отдельными ручками настройки) и кнопкой SB1. Чтобы движения рук не влияли на настройку контуров, панель желательно сделать металлической или из фольгированного материала.

Она же может служить и общим проводом приемника. Роторы КПЕ должны иметь хороший электрический контакт с панелью. Разъемы антенны и телефонов Х1 и Х2 можно установить как на той же передней панели, так и на боковых или задней стенках корпуса приемника. Его размеры целиком зависят от имеющихся в распоряжении деталей Скажем несколько слов о них.

Конденсаторы С1 и С2 - типа КПВ с максимальной емкостью 15 .25 пФ Конденсаторы СЗ-С5 использованы керамические, малогабаритные.

Катушки L1 и L2 бескаркасные, намотаны на оправках диаметром 8 мм и содержат 5 и 7 витков соответственно. Длина намотки 10... 15 мм (регулируют при настройке).

Провод ПЭЛ 0,6...0,8 мм, но лучше использовать посеребренный, особенно для катушки L2. Отводы сделаны от 1 витка к электродам транзистора и от 1,5 витков к антенне.

Катушки можно расположить как соосно, так и параллельно друг другу. Расстояние между катушками (10...20 мм) подбирают при налаживании. Приемник будет работать даже при отсутствии индуктивной связи между катушками - емкостной связи через междуэлектродную емкость транзистора вполне достаточно. Трансформатор Т1 взят готовый, от трансляционного громкоговорителя.

В качестве VT1 подойдет любой германиевый транзистор с граничной частотой не ниже 400 МГц. При использовании р-п-р транзистора, например, ГТ313А полярность включения стрелочного индикатора и диода следует изменить на обратную. Диод может быть любым германиевым, высокочастотным.

Для приемника годится любой индикатор с током полного отклонения 50-150 мкА, например, стрелочный индикатор уровня записи от магнитофона.

Налаживание приемника сводится к настройке контуров на частоты хорошо слышимых радиостанций, подбору положения отводов катушек по максимальной громкости и качеству приема, а также связи между катушками. Полезно подобрать и резистор R1, тоже по максимальной громкости.

С описанной антенной на балконе приемник обеспечивал высококачественный прием двух станций с наиболее мощным сигналом при расстоянии до радиоцентра не менее 4 км и при отсутствии прямой видимости (загораживали дома). Коллекторный ток транзистора составлял 30...50 мкА.

Разумеется, возможные конструкции детекторных УКВ приемников не ограничиваются описанными. Напротив, их следует рассматривать лишь как первые опыты в этом интересном направлении. Если применить эффективную антенну, вынесенную на крышу и направленную на интересующую радиостанцию, можно получить достаточную мощность сигнала даже на значительном удалении от радиостанции.

Это открывает весьма заманчивые перспективы высококачественного приема на головные телефоны, а в некоторых случаях, возможно, удастся получить и громкоговорящий прием. Усовершенствование самих приемников возможно при использовании более эффективных схем детектирования и высокодобротных объемных, в частности, спиральных резонаторов в качестве колебательных контуров.

В. Поляков, г. Москва. Р2001, 7.

Рекомендуем почитать

Наверх