Lcd 1602 подключение к ардуино nano. LCD WH1602B компании Winstar

Настройка Bluetooth 23.10.2020
Настройка Bluetooth

Все давно привыкли, что у каждого электронного устройства есть экран, с помощью которого оно дает человеку всякую полезную информацию. MP3-плеер показывает название играемого трека, пульт квадрокоптера отображает полетную телеметрию, даже стиральная машина выводит на дисплей время до конца стирки, а на смартфоне вообще размещается целый рабочий стол персонального компьютера! Скорее всего, вашему очередному устройству тоже не помешает какой-нибудь небольшой дисплейчик 🙂 Попробуем сделать простые электронные часы! А в качестве табло используем распространенный и дешевый символьный жидкокристаллический дисплей 1602. Вот прямо такой, как на картинке: Кроме 16х2, достаточно популярным считается символьный дисплей 20х4 (четыре строки по 20 символов), а также графический дисплей с разрешением 128х64 точек. Вот они на картинках:

1. Подключение символьного ЖК дисплея 1602

У дисплея 1602 есть 16 выводов. Обычно они нумеруются слева-направо, если смотреть на него так как на картинке. Иногда выводы подписываются, типа: DB0, DB1, EN и т.п. А иногда просто указывают номер вывода. В любом случае, список выводов всегда одинаковый: 1 — «GND», земля (минус питания); 2 — «Vcc»,­ питание +5В; 3 — «VEE», контраст; 4 — «RS», выбор регистра; 5 — «R/W», направление передачи данных (запись/чтение); 6 — «EN», синхронизация; 7-14 — «DB0­», «DB1», .., «DB7″­- шина данных; 15 — анод подсветки (+5В); 16 — катод подсветки (земля). Линии VEE, RS и четыре линии данных DB4, DB5, DB6, DB7 подключаем к цифровым выводам контроллера. Линию «R/W» подключим к «земле» контроллера (так как нам потребуется только функция записи в память дисплея). Подсветку пока подключать не будем, с этим, я полагаю, вы сами легко разберетесь 🙂 Принципиальная схема подключения дисплея к Ардуино Уно
Внешний вид макета
На всякий случай еще и в виде таблички:
ЖК дисплей 1602 1 2 4 6 11 12 13 14 15 16
Ардуино Уно GND +5V 4 5 6 7 8 9 +5V GND

2. Программируем «Hello, world!»

Для работы с ЖК дисплеями различных размеров и типов, в редакторе Arduino IDE имеется специальная библиотека LiquidCrystal . Чтобы подключить библиотеку, запишем первой строчкой нашей программы следующее выражение: #include Далее, нам потребуется указать какие выводы Ардуино мы использовали для подключения дисплея. Эту информацию мы укажем при инициализации модуля: LiquidCrystal lcd(4, 5, 6, 7, 8, 9); Здесь первые два аргумента — это выводы RS и EN, а оставшиеся четыре — линии шины данных DB4-DB7. Далее, укажем размер дисплея с помощью команды «begin»: lcd.begin(16, 2); Напоминаю, в нашем дисплее имеется две строки, по 16 символов в каждой. Наконец, для вывода текста нам понадобится простая функция «print». Вывод с помощью этой функции всем известной фразы будет выглядеть следующим образом: lcd.print("Hello, world!"); Полностью программа будет выглядеть так: #include LiquidCrystal lcd(4, 5, 6, 7, 8, 9); void setup(){ lcd.begin(16, 2); lcd.print("Hello, world!"); } void loop(){ } Загружаем её на Ардуино Уно, и смотрим что творится на дисплее. Может быть три основных ситуации 🙂 1) На дисплее отобразится надпись «Hello, world!». Значит вы все правильно подключили, и контраст каким-то чудесным образом оказался изначально правильно настроен. Радуемся, и переходим к следующей главе. 2) На дисплее отобразится целый ряд черных прямоугольников — требуется настройка контраста! Именно для этого мы добавили в цепь потенциометр с ручкой. Крутим его от одного края, до другого, до момента пока на дисплее не появится четкая надпись. 3) Два ряда черных прямоугольников. Скорее всего, вы что-то напутали при подключении. Проверьте трижды все провода. Если не найдете ошибку — попросите кота проверить!

3. Программируем часы

Теперь когда дисплей точно работает, попробуем превратить наше нехитрое устройство в настоящие электронные часы. Внимание! Для вывода времени нам потребуется библиотека «Time». Если она еще не установлена, то можно скачать архив по ссылке . Подключим ее: #include Затем установим текущие дату и время с помощью функции «setTime»: setTime(23, 59, 59, 12, 31, 2015); Здесь все понятно: часы, минуты, секунды, месяц, число, год. Для вывода даты используем кучу функции:
  • year() — вернет нам год;
  • month()­ — месяц;
  • day() ­- день;
  • hour() ­- час;
  • minute() — вернет минуту;
  • second() -­ секунду.
Теперь обратим внимание вот на какой факт. Если посчитать количество символов в типовой записи даты: «31.12.2015 23:59:59», получим 19. А у нас всего 16! Не влазит, однако, в одну строчку. Решить проблему можно еще одной полезной функцией — «setCursor». Эта функция устанавливает курсор в нужную позицию. Например: lcd.setCursor(0,1); Установит курсор в начало второй строчки. Курсор — это место символа, с которого начнется вывод текста следующей командой «print». Воспользуемся этой функцией для вывода даты в первой строчке, а времени во второй. С выводом даты и времени теперь все ясно. Остались рутинные вещи. Например, после каждого заполнения дисплея, мы будем его чистить функцией «clear()»: lcd.clear(); А еще нам нет смысла выводить данные на дисплей чаще чем раз в секунду, поэтому между двумя итерациями сделаем паузу в 1000 миллисекунд. Итак, сложив все вместе, получим такую программу: #include #include LiquidCrystal lcd(4, 5, 6, 7, 8, 9); void setup(){ lcd.begin(16, 2); setTime(7,0,0,1,10,2015); // 7 утра, десятого января 2015 года } void loop(){ lcd.clear(); lcd.print(day()); lcd.print("."); lcd.print(month()); lcd.print("."); lcd.print(year()); lcd.setCursor(0, 1); lcd.print(hour()); lcd.print(":"); lcd.print(minute()); lcd.print(":"); lcd.print(second()); delay(1000); } Загружаем скетч на Ардуино Уно, и наблюдаем за ходом часиков! 🙂 Для того чтобы закрепить полученные знания, рекомендую прокачать наши часы до полноценного будильника. Всего-то на всего потребуется добавить пару кнопок и зуммер 🙂

В сегодняшнем уроке будет рассмотрена работа с символьным LCD дисплеем фирмы Winstar на контроллере HD44780. Следует сразу отметить, что аналогов данного дисплея великое множество и прошивка будет работать со всеми ними. Также была проверена работа данного кода с графическими и символьными OLED дисплеями.

Начнем, как и обычно, с постановки задачи. Необходимо подключить дисплей по 4х-битной шине к отладочной плате STM32F4 и вывести на него любой текст.

Итак, начнем с подключения. Существует два типа подключения подобных дисплеев: по 4х- и 8ми-битным шинам, при этом существенной разницы между ними нет, поэтому остановимся на первой, поскольку она требует меньшего количества проводников.

Схема подключения показана на рисунке ниже.

Следует отметить один очень важный момент: 1 вывод - "+5В" и 2 - "GND", на многих дисплеях поменяны местами, поэтому прежде чем подключить дисплей, прочитайте даташит. Неправильное подключение может привести к выходу дисплея из строя.

Собрать отладочную плату и дисплей в одно устройство можно разными способами. Можно просто распаять проводками, можно развести печатную плату-переходник, а можно собрать переходник на макетной плате, как показано на фото.

Теперь перейдем к прошивке. Выполним ее в виде отдельной библиотеки, чтобы в дальнейшем упростить подключение дисплея в других проектах - добавляете файл в проект и используете. Библиотеку назовем lcd.h. В библиотеке содержится следующий код:

//---Переопределяем порты для подключения дисплея, для удобства---// #define LCM_OUT GPIOB->ODR #define LCM_PIN_RS GPIO_Pin_0 // PB0 #define LCM_PIN_EN GPIO_Pin_1 // PB1 #define LCM_PIN_D7 GPIO_Pin_7 // PB7 #define LCM_PIN_D6 GPIO_Pin_6 // PB6 #define LCM_PIN_D5 GPIO_Pin_5 // PB5 #define LCM_PIN_D4 GPIO_Pin_4 // PB4 #define LCM_PIN_MASK ((LCM_PIN_RS | LCM_PIN_EN | LCM_PIN_D7 | LCM_PIN_D6 | LCM_PIN_D5 | LCM_PIN_D4)) GPIO_InitTypeDef GPIO_InitStructure; //---Функция задержки---// void delay(int a) { int i = 0; int f = 0; while(f < a) { while(i<60) {i++;} f++; } } //---Нужная функция для работы с дисплеем, по сути "дергаем ножкой" EN---// void PulseLCD() { LCM_OUT &= ~LCM_PIN_EN; delay(220); LCM_OUT |= LCM_PIN_EN; delay(220); LCM_OUT &= (~LCM_PIN_EN); delay(220); } //---Отсылка байта в дисплей---// void SendByte(char ByteToSend, int IsData) { LCM_OUT &= (~LCM_PIN_MASK); LCM_OUT |= (ByteToSend & 0xF0); if (IsData == 1) LCM_OUT |= LCM_PIN_RS; else LCM_OUT &= ~LCM_PIN_RS; PulseLCD(); LCM_OUT &= (~LCM_PIN_MASK); LCM_OUT |= ((ByteToSend & 0x0F) << 4); if (IsData == 1) LCM_OUT |= LCM_PIN_RS; else LCM_OUT &= ~LCM_PIN_RS; PulseLCD(); } //---Установка позиции курсора---// void Cursor(char Row, char Col) { char address; if (Row == 0) address = 0; else address = 0x40; address |= Col; SendByte(0x80 | address, 0); } //---Очистка дисплея---// void ClearLCDScreen() { SendByte(0x01, 0); SendByte(0x02, 0); } //---Инициализация дисплея---// void InitializeLCD(void) { RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE); GPIO_InitStructure.GPIO_Pin =GPIO_Pin_0 | GPIO_Pin_1| GPIO_Pin_4 | GPIO_Pin_5| GPIO_Pin_6| GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOB, &GPIO_InitStructure); LCM_OUT &= ~(LCM_PIN_MASK); delay(32000); delay(32000); delay(32000); LCM_OUT &= ~LCM_PIN_RS; LCM_OUT &= ~LCM_PIN_EN; LCM_OUT = 0x20; PulseLCD(); SendByte(0x28, 0); SendByte(0x0E, 0); SendByte(0x06, 0); } //---Печать строки---// void PrintStr(char *Text) { char *c; c = Text; while ((c != 0) && (*c != 0)) { SendByte(*c, 1); c++; } }

Пройдемся по основным функциям библиотеки:

InitializeLCD() - инициализация дисплея, необходимо выполнять при старте программы.

InitializeLCD(); //Инициализация дисплея

ClearLCDScree n ( ) - очистка памяти дисплея.

ClearLCDScreen(); //Очистка памяти дисплея

Curso r (№ строки, № столбца) - установка позиции курсора, отсчет начинается с нулевой строки и нулевого столбца.

Cursor(0,2); //Установка курсора, 0-ая строка, 2-ой столбец

PrintStr(текст ) - написание строки на дисплее.

PrintStr("сайт");

SendByte( байт, режим) - если коротко, то эта функция отправляет байт в дисплей. Если параметр «режим» равен «1», то на дисплее появится символ, а если «0» - то байт будет принят дисплеем в режиме настройки. Например очистка дисплея, установка курсора или выбор типа курсора.

SendByte(0b00001100, 0); //Курсор выключен

С библиотекой закончили. Теперь пора запускать дисплей. Для этого в основном файле main.c надо написать следующий код:

#include "stm32f4xx.h" #include "stm32f4xx_gpio.h" #include "stm32f4xx_rcc.h" #include "lcd.h" int main(void) { InitializeLCD(); //Инициализация дисплея ClearLCDScreen(); //Очистка дисплея от мусора Cursor(0,2); //Установка курсора PrintStr("Specially for"); //Написание текста Cursor(1,4); PrintStr("сайт"); while(1) { } }

Д умаю по комментариям все понятно. Теперь остается скомпилировать код и прошить плату. Делаем рестарт и наслаждаемся написанным.

Символьный дисплей LCD1602 с голубой подсветкой - жидкокристаллический дисплей (Liquid Crystal Display) экран которого способен отображать одновременно до 32 символов (16 столбцов, 02 строки). Подключение к осуществляется по синхронному 8-битному параллельному интерфейсу. Примеры работы с символьными дисплеями описаны в разделе .

Характеристики

  • Тип выводимой информации: символьный.
  • Язык в ПЗУ дисплея: латиница, японский.
  • Возможность загрузки собственных символов: есть.
  • Формат выводимой информации: 16×02 символов;
  • Тип дисплея: LCD.
  • Технология дисплея: STN.
  • Угол обзора: 180°.
  • Тип подсветки: LED.
  • Цвет подсветки: синий.
  • Цвет символов: белый.
  • Контроллер: HD44780.
  • Интерфейс: синхронный, 8-битный, параллельный.
  • Напряжение питания 5 В.
  • Рабочая температура: -20 ... +70 °С.
  • Температура хранения -30 ... +80 °С.
  • Габариты: 80x36 мм.

Подключение

Подключение дисплея LCD1602 по параллельному интерфейсу немного сложнее чем через по шине I2C, а также требуется дополнительный элемент - для регулировки контрастности.

Шина данных дисплея состоит из 8 линий (D0-D7), но если подключить только старшие 4 линии (D4-D7), как это показано на рисунке, это не снижает скорость работы дисплея. Для удобства мы подключили выводы D4-D7 дисплея к одноимённым выводам D4-D7 . Вы можете подключать выводы D0-D7, E и RS дисплея, к любым выводам , указав их в скетче при объявлении объекта библиотеки.

№: Дисплей: Arduino: Назначение:
16 K (LED-) GND Катод (минус) LED (светодиодной) подсветки.
15 A (LED+) 5V Анод (плюс) LED (светодиодной) подсветки.
14...7 D7 ...D0 (DB7...DB0) Любые Шина данных (Data Bus) состоящая из 8 линий. В приведённой схеме используются только старшие 4 линии, т.к. это не влияет на скорость работы дисплея.
6 E Любой Сигнал разрешения (Enable).
5 RW GND Выбор направления (Read / Write) передачи данных: «1» - чтение из дисплея / «0» - запись в дисплей. Вывод подключен к GND, т.к. данные только записываются в дисплей.
4 RS Любой Выбор регистра (Register Selection) получателя информации: «1» - регистр данных / «0» - регистр инструкций.
3 V0 (VEE)
Установка контрастности дисплея: 0 ... +5 В постоянного тока.
2 VDD (VCC) 5V Питание логики дисплея: +5 В постоянного тока.
1 VSS (GND) GND Общий вывод питания (земля).

Питание

Напряжение питания логики дисплея 5 В постоянного тока подаётся на выводы VDD (VCC) и VSS (GND) дисплея.

Напряжение питания подсветки 5 В постоянного тока подаётся на выводы A (Анод - Anode) и K (Катод - Cathode) дисплея.

Потенциал для установки контрастности 0 ... +5 В постоянного тока подаётся на вывод V0 дисплея.

Подробнее о дисплее

Символьный дисплей построен на базе ЖК дисплея типа STN (Super Twisted Nematic) под управлением контроллера HD44780 и имеет синхронный параллельный 8-битный интерфейс. Дисплей оснащён светодиодной подсветкой синего цвета и способен одновременно отображать до 32 символов (16 столбцов, 02 строки) от чего и произошло название дисплея: LCD1602. Контроллер HD44780 имеет ПЗУ в которой хранятся цифры, символы латиницы и некоторые иероглифы японского языка, для их отображения на дисплее. Отсутствующие символы, в т.ч. и символы кириллицы, можно загружать в память ОЗУ контроллера, для вывода на дисплей надписей на Русском языке или нестандартных символов (например «смайликов»).

Если к выводам дисплея подключить то можно преобразовать его синхронный 8-битный параллельный интерфейс в шину I2C (превратив дисплей из LCD1602 в

  • 13.04.2015

    Микросхема серии К1156ЕР5х представляет собой трехвыводной регулируемый прецизионный параллельный стабилизатор с высокой температурной стабильностью. Аналогом микросхемы К1156ЕР5х является микросхема TL431 фирм MOTOROLA, TEXAS INSTRUMENTS. Назначение выводов: 1- опорное напряжение 2- анод 3- катод ОСОБЕННОСТИ Опорное напряжение 2495 мВ ± 1%; Типовое значение изменения опорного напряжения 5 мВ в рабочем диапазоне температур; Типовое значение …

  • 09.10.2014

    Данный микрофонный усилитель подключается к звуковой карте ПК, он работает с двумя монофоническими микрофонами. Основа микрофонного усилителя малошумящие ОУ NE5532 NE5534. Правый левый каналы идентичны. Сигнал с микрофона запитанного через ФНЧ — R2 С1 С2, через разделительный конденсатор С3 поступает на первый каскад усиления. Усилитель на ОУ охвачен петлей нелинейной …

  • 28.09.2014

    В темное время суток иногда необходимо дополнительное освещения в автомобиле (для ремонта, регулировка двигателя и др), предложенная схема позволяет плавно регулировать осветительную 12В/2А лампу от 5% до 90% ее яркости при помощи ШИМ регулятора. Регулятор предназначен для автомобилей с отрицательной массой. Конструкция регулятора основана на микросхеме 40106 которая работает как …

  • 12.03.2015

    На рисунке показана схема простого многоуровневого индикатора воды. Индикатор имеет семь градаций. В схеме использована всего одна микросхема ULN2004 и несколько внешних элементов. В качестве зондов можно использовать медную или алюминиевую проволоку. Провод к которому подключен зонд должен быть экранированным. Используйте светодиоды разного цвета, для удобства восприятия уровня воды в емкости. …

LCD дисплеи от компании Winstar уже на протяжении нескольких лет являются неотъемлемой частью современной электронной продукции, и не только на российском рынке. Они дешевы, очень распространены (не видел магазинов, где их не было бы), их разнообразие предоставляет разработчику выбирать подходящий в зависимости от эксплуатационных условий. Их различие заключается в диапазонах рабочих температур, количеством строк для отображения информации, количеством знакомест в строке, стандартными из которых являются значения 8, 12, 16, 20, 24 и 40 символов на одну строку, так же различаются размерами символа, его разрешением, размерами самого дисплея и т.д. Winstar выпускает не только буквенно-цифровые знакосинтезирующие LCD-модули, но и графические. Те, в свою очередь, тоже имеют различные параметры, что предоставляет пользователю возможность выбирать подходящий исходя из поставленной задачи.

Многие начинающие радиолюбители, только-только начавшие осваивать цифровую технику, микроконтроллеры, рано или поздно столкнутся с проблемой, связанной с подключением и управлением данного дисплея. Немного упростив ситуацию с даташитом на дисплей WH1602B, я старался описать процесс подключения и управления модулем максимально просто для понимания.

Стандартно дисплей WH1602B выглядит так:

16 выводных линий, из которых 11 – линии управления, расположены в ряд с шагом 2,54мм, что позволяет разработчику напрямую подпаять шлейф или поставить разъем, и отвести шлейф к плате управления, в зависимости от конструкции конечного устройства.

Далеко не редким является дисплей с боковым расположением контактов.

В зависимости от конструктива радиоэлектронного устройства разработчик может использовать любой тип расположения выводов – различия между программными обеспечениями совершенно нет.
Модули могут комплектоваться задней подсветкой экрана, причем тип источника подсветки у разных модулей различен. В некоторых дисплеях используется электролюминесцентная подсветка, обеспечивающая равномерное распределение свечения по всей отображаемой поверхности экрана. Главным недостатком дисплея с таким типом подсветки является, пожалуй, одно: для питания такого дисплея нужен переменный ток высокого напряжения. У светодиодных подсветок недостатков практически нет, модули с применением светодиодной подсветки могут использоваться в приложениях, работающих при широких диапазонах температур. Производитель дает широкий выбор в плане цвета подсветки – поскольку светодиодные матрицы можно установить практически любого цвета.

Существенным недостатком дисплеев WH1602B является ток потребления, поэтому применять данный тип дисплеев в устройствах с автономным питанием совершенно невыгодно.

Дисплеи линейки WH построены на базе специализированного контроллера LCD-модулей HD44780, который как раз и разрабатывался для управления знакосинтезирующими ЖК-панелями.

С небольшим описанием, пожалуй, стоит закончить, и приступить к практической части. Нумерация выводов дисплея, если смотреть на него сверху (т.е. как мы смотрим на него при чтении информации), идет начиная с самого крайнего левого вывода. Это вывод 1.

Подключение 1602:

Итак распиновка 1602 :
1) GND – общий провод
2) Vcc – напряжение питания +5В
3) V0 – контрастность
4) RS – линия выбора регистра
5) RW – линия выбора направления передачи данных (чтение или запись)
6) E – линия синхронизации
7) DB0 – 14) DB7 – линии шины данных
15) A – анод подсветки (подключаем сюда +5В через резистор 100Ом)
16) К – катод подсветки (подключаем к общему проводу)

Дисплей может работать в 2 режимах: в режиме 8-битной передачи данных, когда данные передаются группами по 8 бит (при этом обеспечивается максимальная скорость взаимодействия с дисплеем), и в режиме 4-битной передачи, когда 8-битные данные разбиваются на две группы по четыре разряда и последовательно передаются по четырем старшим линиям данных DB4-DB7.

Для начала работы с дисплеем его нужно инициализировать. Процесс инициализации заключается в последовательной передачи контроллеру HD44780 определенных данных. После их обнаружения, он будет готов принимать данные для отображения на экране.

Мы рассмотрим процесс инициализации дисплея WH1602B в 8-битном режиме с использованием управляющей платы, основанной на микроконтроллере Attiny2313.

Итак, какие действия необходимо выполнить для надежного процесса инициализации :
1) Включить питание дисплея
2) Выдержать паузу 20мс
3) Выдать команду 00110000 при RS=0 RW=0
4) Выдержать паузу не менее 40мкс
5) Выдать команду 00110000 при RS=0 RW=0
6) Выдержать паузу не менее 40мкс
7) Выдать команду 00110000 при RS=0 RW=0
8) Выдержать паузу не менее 40мкс
9) Выдать команду 00111000 при RS=0 RW=0
10) Выдержать паузу не менее 40мкс
11) Выдать команду 00001000 при RS=0 RW=0
12) Выдержать паузу не менее 40мкс
13) Выдать команду 00000001 при RS=0 RW=0
14) Выдержать паузу не менее 1,5мс
15) Выдать команду 00000110 при RS=0 RW=0.

Поясню: RS – как отмечалось выше – линия выбора регистра (0 – адресуется регистр команд, в который мы записываем команды отключения дисплея, сдвига строки, установление курсора и т.д.; 1 – адресуется внутренняя память, куда будет записываться байт и отображаться на дисплее).

RW – линия выбора направления передачи данных (0 – запись в дисплей, 1 – чтение данных из дисплея).
После выдачи данных на линию данных DB0-DB7 и установки значений на линиях RS, RW, необходимо эти данные защелкнуть – для этого нужно установить линию E в 1, и, затем, снова сбросить в исходное положение – в 0.

Подключаем PD0 микроконтроллера к линии RS LCD, вывод PD1 микроконтроллера к RW дисплея, ну а PD2 – соответственно к линии Е дисплея, а линии шины данных DB0-DB7 к соответствующим линиям порта B микроконтроллера. Сам дисплей подключаем согласно схеме вверху.

Теперь дело за программной частью:

Include "tn2313def.inc" ; Attiny2313, 1 MHz clock .cseg .org 0 rjmp reset ;******************************************************************** ;Стандартный переход к инициализированной части программы reset: ldi r16, low (RAMEND) ; Инициализация стека МК out SPL, r16 rcall lcd_init ; Инициализация дисплея;Здесь мы инициализировали стек микроконтроллера и перешли к инициализации LCD-модуля;******************************************************************** lcd_init: ldi r16, 0b10000000 ; сбрасываем все подтягивающие резисторы out MCUCR, r16 ldi r16, 0b11111111 ; Настройка порта B out ddrb, r16 ldi r16, 0b00000111 ; Настройка порта D out ddrd, r16 ;Настраиваем линии портов ввода/вывода: сбрасываем подтягивающие резисторы и определяем;PB0-PB7, PD0-PD2 как линии вывода данных;******************************************************************** ;Исходя из вышеуказанной процедуры инициализации выполняем операции: ldi r16, 0b00000000 ; Адресация IR ldi r17, 0b00110000 ; Установка разрядности Data line rcall delay_20000mks ; Пауза перед инициализацией lcd rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd ldi r17, 0b00111000 ; Установка параметров lcd rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd ldi r17, 0b00001000 ; Выключение дисплея rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd ldi r17, 0b00000001 ; Очистка дисплея rcall write_lcd ; Запись данных в lcd rcall delay_1500mks ; Задержка перед выполнением операций с lcd ldi r17, 0b00000110 ; Установка режима ввода данных rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd ret ; Выход из подпрограммы;******************************************************************** delay_20000mks: ldi r18, 0b10110010 ; Ввод переменной задержки ldi r19, 0b00000101 ; Настройка предделителя rjmp init_delay delay_1500mks: ldi r18, 0b11111010 ; Ввод переменной задержки ldi r19, 0b00000101 ; Настройка предделителя rjmp init_delay delay_40mks: ldi r18, 0b11011000 ; Ввод переменной задержки ldi r19, 0b00000010 ; Настройка предделителя init_delay: out TCNT0, r18 ; Инициализация TCNT0 out TCCR0B, r19 ; Старт T0 test_TIFR: in r18, TIFR ; Чтение TIFR sbrs r18, 1 ; Переход, если "Переполнение T0" rjmp test_TIFR ; Бесконечная проверка TOV0 ldi r20, 0b00000000 ; Остановка T0 out TCCR0B, r20 ldi r20, 0b00000010 ; Загрузка TOV0>>0 out TIFR, r21 ret ; Выход из подпрограммы;******************************************************************** write_lcd: out portd, r16 ; Установка значения линии RS out portb, r17 ; Вывод байта данных DB0-DB7 nop ; Защита от шумов на линии стробирования sbi portd, 2 ; E>>1 nop ; Защита от шумов на линии стробирования cbi portd, 2 ; E>>0 nop ; Защита от шумов на линии стробирования ret ; Выход из подпрограммы;******************************************************************** user_write_IR: ldi r16, 0b00000000 ; Адресация IR rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd ret ; Выход из подпрограммы;******************************************************************** user_write_DR: ldi r16, 0b00000001 ; Адресация DR rcall write_lcd ; Запись данных в lcd rcall delay_40mks ; Задержка перед выполнением операций с lcd ret ; Выход из подпрограммы;******************************************************************** lcd_clear: ldi r16, 0b00000000 ; Адресация IR ldi r17, 0b00000001 ; Очистка дисплея rcall write_lcd ; Запись данных в lcd rcall delay_1500mks ; Задержка перед выполнением операций с lcd ret ; Выход из подпрограммы;********************************************************************

Как пользоваться данным кодом. Для занесения символа на экран необходимо записать байт, соответствующий коду этого символа, в регистр R17. В регистр 17 заносим 0х1 – если хотим записать символ на экран, или сбрасываем в 0х0, если хотим записать какую-то команду в регистр команд LCD дисплея.

Мной были предусмотрены подпрограммы, которые вызывает пользователь:
user_write_IR – запись команды в регистр команды LCD;
user_write_DR – запись данных для отображения на LCD;
lcd_clear – подпрограмма/команда, вызов которой осуществляет очистку дисплея.

Как работать с вызовом подпрограмм:

Ldi r17, 0x24; Символ с кодом 0x24 rcall user_write_DR; запись символа на отображение ldi r17, 0x2; команда 0х2 rcall user_write_IR; записываем в регистр.

Отмечу, что при использовании подпрограммы lcd_clear предварительная запись в R17 не требуется.
Где писать свой код? Вот здесь:

Reset: ldi r16, low (RAMEND) ; Инициализация стека МК out SPL, r16 rcall lcd_init ; Инициализация дисплея;ВАШ КОД!!! Например: Ldi r17, 0xC; Включаем изображение ldi r17, 0x24; Символ с кодом 0x24 rcall user_write_DR; запись символа на отображение

Добавлю, что в последнее время появились данные модули с платой последовательного преобразователя, позволяющие подключать LCD дисплеи 1602 по 4-х проводной схеме и работающими по I 2 C-интерфейсу. Т.о. немного упрощается подключение и экономятся выводы контроллера. Модуль можно приобрести отдельно и подключить к уже имеющемуся LCD 1602.

Скачать исходники и прошивку вы можете ниже

Рекомендуем почитать

Наверх